已知橢圓過點,且它的離心率.直線
與橢圓交于、兩點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時,求證:、兩點的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點滿足,求實數(shù)的取值范圍.
(Ⅰ) ;
(Ⅱ),為定值.
(Ⅲ)的取值范圍為 .
【解析】
試題分析:(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為
由已知得:,解得
所以橢圓的標(biāo)準(zhǔn)方程為: 4分
(Ⅱ) 由,得,設(shè),,
則,為定值. 9分
(Ⅲ)因為直線與圓相切
所以,
把代入并整理得:
設(shè),則有
因為,, 所以,
又因為點在橢圓上, 所以,
. 因為 所以 ,
所以 ,所以 的取值范圍為 . 16分
考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與圓、橢圓的位置關(guān)系,二次函數(shù)性質(zhì)。
點評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求標(biāo)準(zhǔn)方程,主要考慮定義及a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問題,往往應(yīng)用韋達(dá)定理。涉及直線于圓的位置關(guān)系問題,往往利用“特征三角形”。本題在應(yīng)用韋達(dá)定理的基礎(chǔ)上,得到參數(shù)的表達(dá)式,應(yīng)用二次函數(shù)性質(zhì)使問題得解。
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市高三畢業(yè)班聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知中心在坐標(biāo)原點,焦點在軸上的橢圓過點,且它的離心率.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省紹興市諸暨中學(xué)高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)小題限時訓(xùn)練試卷(10)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com