15.已知向量$\overrightarrow{BA}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),則∠ABC=( 。
A.30°B.45°C.60°D.90°

分析 由已知向量的坐標(biāo)求出向量的模,再求出$\overrightarrow{BA}•\overrightarrow{BC}$,代入數(shù)量積求夾角公式得答案.

解答 解:∵$\overrightarrow{BA}$=(-$\frac{1}{2},\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$),
∴$|\overrightarrow{BA}|=\sqrt{(-\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=1$,$|\overrightarrow{BC}|=\sqrt{(\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=1$,
$\overrightarrow{BA}•\overrightarrow{BC}=-\frac{1}{2}×\frac{1}{2}+\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}=\frac{1}{2}$,
則cos∠ABC=cos<$\overrightarrow{BA},\overrightarrow{BC}$>=$\frac{\overrightarrow{BA}•\overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}=\frac{\frac{1}{2}}{1×1}=\frac{1}{2}$,
則∠ABC=60°.
故選:C.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查由數(shù)量積求向量的夾角,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的離心率為$\frac{{2\sqrt{3}}}{3}$,過(guò)右焦點(diǎn)F的直線與兩條漸近線分別交于點(diǎn)A、B且與其中一條漸近線垂直,若△OAB的面積為2$\sqrt{3}$,其中O為坐標(biāo)原點(diǎn),則雙曲線的焦距為(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{4\sqrt{3}}}{3}$C.$2\sqrt{3}$D.$2\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1的各棱長(zhǎng)均為2,其正視圖如圖所示,則此三棱柱側(cè)視圖的面積為(  )
A.2B.4C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且cosA=$\frac{{\sqrt{6}}}{3}$.
(1)求tan2A;
(2)若cosB=$\frac{{2\sqrt{2}}}{3},c=2\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=-2,則 cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,角α的始邊與x軸的非負(fù)半軸重合,終邊與單位圓交于點(diǎn)A(x1,y1),角β=α+$\frac{2π}{3}$的終邊與單位圓交于點(diǎn)B(x2,y2),記f(α)=y1-y2.若角α為銳角,則f(α)的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.$\underset{lim}{n→∞}$$\frac{(n+5)(1-3n)}{(2n+1)^{2}}$=-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.運(yùn)行如圖所示框圖的相應(yīng)程序,若輸入a,b的值分別為0.25和4,則輸出M的值是( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)F1,F(xiàn)為橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1,(a1>b1>0)與雙曲線C2的公共左、右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2,若橢圓C1的離心率e∈[$\frac{3}{8}$,$\frac{4}{9}$],則雙曲線C2的離心率的取值范圍是( 。
A.[$\frac{5}{4}$,$\frac{5}{3}$]B.[$\frac{3}{2}$,++∞)C.(1,4]D.[$\frac{3}{2}$,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案