【題目】2018年3月山東省高考改革實(shí)施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學(xué)、外語三門統(tǒng)一高考成績和學(xué)生自主選擇的普通高中學(xué)業(yè)水平等級(jí)性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學(xué)生家長對(duì)高考改革方案所持的贊成態(tài)度,隨機(jī)從中抽取了100名城鄉(xiāng)家長作為樣本進(jìn)行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(Ⅰ)請(qǐng)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:

贊成

不贊成

合計(jì)

城鎮(zhèn)居民

農(nóng)村居民

合計(jì)

(Ⅱ)試判斷我們是否有95%的把握認(rèn)為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

【答案】(Ⅰ)列聯(lián)表見解析.

(Ⅱ)沒有的把握認(rèn)為”贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”.

【解析】分析:(Ⅰ)根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表.(2)把數(shù)據(jù)代入公式得沒有的把握認(rèn)為”贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”.

詳解:(Ⅰ)列聯(lián)表,如下:

贊成

不贊成

合計(jì)

城鎮(zhèn)居民

30

15

45

農(nóng)村居民

45

10

55

合計(jì)

75

25

100

(Ⅱ)依據(jù)(Ⅰ)中數(shù)據(jù)代入公式,

觀測值

∴我們沒有的把握認(rèn)為”贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某超市,隨機(jī)調(diào)查了100名顧客購物時(shí)使用手機(jī)支付支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為“超市購物用手機(jī)支付與年齡有關(guān)”.

(2)現(xiàn)按照“使用手機(jī)支付”和“不使用手機(jī)支付”進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機(jī)支付”的概率.

青年

中老年

合計(jì)

使用手機(jī)支付

60

不使用手機(jī)支付

28

合計(jì)

100

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R,c∈[0,2π),若對(duì)任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點(diǎn)個(gè)數(shù)是d個(gè),則滿足條件的有序?qū)崝?shù)組(a,b,c,d)的組數(shù)為(
A.7
B.11
C.14
D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

(Ⅰ)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(Ⅱ)若直線與曲線相交于,兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F2、F1是雙曲線 (a>0,b>0)的上、下焦點(diǎn),點(diǎn)F2關(guān)于漸近線的對(duì)稱點(diǎn)恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為(
A.3
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù) 的圖象如圖

給出下列四個(gè)命題:

①方程有且僅有個(gè)根;②方程有且僅有個(gè)根;

③方程有且僅有個(gè)根;④方程有且僅有個(gè)根;

其中正確命題的序號(hào)是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)某城市一天內(nèi)單次租用共享自行車的時(shí)間分鐘到鐘的人進(jìn)行統(tǒng)計(jì),按照租車時(shí)間, , , , 分組做出頻率分布直方圖,并作出租用時(shí)間和莖葉圖(圖中僅列出了時(shí)間在 的數(shù)據(jù)).

(1)求的頻率分布直方圖中的;

(2)從租用時(shí)間在分鐘以上(含分鐘)的人數(shù)中隨機(jī)抽取人,設(shè)隨機(jī)變量表示所抽取的人租用時(shí)間在內(nèi)的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2-5x+b>0的解是-3<x<2,設(shè)A={x|bx2-5x+a>0},B={x|}.

(1)求a,b的值;

(2)求ABA∪(UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為3x+4y-12=0,求滿足下列條件的直線l的方程:

(1)過點(diǎn)(-1,3),且與l平行的直線方程為________

(2)過點(diǎn)(-1,3),且與l垂直的直線方程為__________

查看答案和解析>>

同步練習(xí)冊答案