已知等比數(shù)列的所有項(xiàng)均為正數(shù),首項(xiàng)=1,且成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)數(shù)列{}的前項(xiàng)和為,若=,求實(shí)數(shù)的值.
(1)=
(2)
【解析】
試題分析:(Ⅰ)設(shè)數(shù)列的公比為,由條件得成等差數(shù)列,
所以 2分
解得
由數(shù)列的所有項(xiàng)均為正數(shù),則=2 4分
數(shù)列的通項(xiàng)公式為= 6分
(Ⅱ)記,則 7分
若不符合條件; 8分
若, 則,數(shù)列為等比數(shù)列,首項(xiàng)為,公比為2,
此時(shí) 10分
又=,所以 12分
考點(diǎn):等差數(shù)列和等比數(shù)列
點(diǎn)評(píng):主要是考查了等差數(shù)列和等比數(shù)列的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆湖南省高三上學(xué)期9月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為若求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省高三最后一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知等比數(shù)列的首項(xiàng),公比,數(shù)列前項(xiàng)的積記為.
(1)求使得取得最大值時(shí)的值;
(2)證明中的任意相鄰三項(xiàng)按從小到大排列,總可以使其成等差數(shù)列,如果所有這些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列.
(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省英文學(xué)校高三下學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
已知等比數(shù)列的首項(xiàng),公比,數(shù)列前n項(xiàng)和記為,前n
項(xiàng)積記為.
(Ⅰ)求數(shù)列的最大項(xiàng)和最小項(xiàng);
(Ⅱ)判斷與的大小, 并求為何值時(shí),取得最大值;
(Ⅲ)證明中的任意相鄰三項(xiàng)按從小到大排列,總可以使其成等差數(shù)列,如果所有這
些等差數(shù)列的公差按從小到大的順序依次設(shè)為,證明:數(shù)列為等比數(shù)列。
(參考數(shù)據(jù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省長沙市一中2010屆高三第一次模擬考試(理) 題型:解答題
已知等比數(shù)列的首項(xiàng)為,公比為(為正整數(shù)),且滿足是與的等差中項(xiàng);數(shù)列滿足().
(1)求數(shù)列的通項(xiàng)公式;
(2)試確定的值,使得數(shù)列為等差數(shù)列;
(3)當(dāng)為等差數(shù)列時(shí),對(duì)任意正整數(shù),在與之間插入2共個(gè),得到一個(gè)新數(shù)列.設(shè)是數(shù)列 的前項(xiàng)和,試求滿足的所有正整數(shù)的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com