關(guān)于x的方程m(x-3)+3=m2x的解為不大于2的實數(shù),則m的取值范圍為    
【答案】分析:把原方程化為未知項移到左邊,常數(shù)項移動右邊,然后當m=0和m=1時,分別代入即可得到方程不成立;當m不等于0且m不等于1時,求出方程的解,讓方程的解小于等于2,列出關(guān)于m的不等式,求出不等式的解集即可得到m的取值范圍,綜上,得到符合題意的m的取值范圍.
解答:解:由m(x-3)+3=m2x得:
(m2-m)x=-3m+3,
若m=0,不成立;m=1,解得x為R,不成立,
若m≠0且m≠1時,則x==-≤2,即≥0,
可化為:m(2m+3)≥0,解得:m≥0或m≤-,
綜上,得到m的取值范圍為:
故答案為:
點評:此題考查l分類討論的數(shù)學思想,考查了一元一次方程的解法,是一道綜合題.學生做題時應注意考慮m≠0且m≠1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)=a|x|+
2
ax
(a>0,a≠1)
,
(Ⅰ)若a>1,且關(guān)于x的方程f(x)=m有兩個不同的正數(shù)解,求實數(shù)m的取值范圍;
(Ⅱ)設函數(shù)g(x)=f(-x),x∈[-2,+∞),g(x)滿足如下性質(zhì):若存在最大(。┲担瑒t最大(。┲蹬ca無關(guān).試求a的取值范圍.
(2)已知函數(shù)f(x)=lnx-mx+m,m∈R.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,任意的0<a<b,求證:
f(b)-f(a)
a-b
1
a(1+a)
.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx+(a-1)x(a∈R).
(Ⅰ)當a=1時,求曲線y=f(x)在x=1處的切線方程;
(Ⅱ)當a=0時,關(guān)于x的方程f(x)=m在區(qū)間[
1
2
,3]
內(nèi)有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(Ⅲ)求函數(shù)f(x)在區(qū)間[
1
e
,e]
上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①若關(guān)于x的方程m(x-1)=3(x+2)的解為正數(shù),求實數(shù)m的取值范圍;
②設①中m的取值范圍用集合A表示,關(guān)于x的不等式(x-a)(2a-1-x)>0(a<1)的解集用集合B表示,若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•瀘州模擬)設函數(shù)f(x)=loga
1+x
1-x
(a>0且a≠1)

(I)求f(m)+f(n)-f(
m+n
1+mn
)
的值;
(II)若關(guān)于x的方程loga
t
(1-x)(2x2-5x+5)
=f(x)
在x∈[0,1)上有實數(shù)解,求實數(shù)t的取值范圍.
(III)設函數(shù)g(x)是函數(shù)f(x)的反函數(shù),求證:當a>1時,
n
k=1
g(a-k)<
lna
2(a-1)
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于x的方程m(x-3)+3=m2x的解為不大于2的實數(shù),則m的取值范圍為
 

查看答案和解析>>

同步練習冊答案