已知橢圓過(guò)點(diǎn)(-2,0),(2,0),(0,3),求橢圓的標(biāo)準(zhǔn)方程.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:由已知即可確定焦點(diǎn)在x軸上,從而a=2,b=3,可求得它的標(biāo)準(zhǔn)方程是
x2
4
+
y2
9
=1
解答: 解:橢圓過(guò)點(diǎn)(-2,0),(2,0),(0,3)
則焦點(diǎn)在x軸上
a=2,b=3
故它的標(biāo)準(zhǔn)方程是
x2
4
+
y2
9
=1
點(diǎn)評(píng):本題主要考察了橢圓的標(biāo)準(zhǔn)方程的求法,屬于基礎(chǔ)知識(shí)的考察.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ=3,求
sin4θ-3sinθcos3θ+cos4θ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-
1
x
|.
(1)證明f(x)的奇偶性并證明;
(2)試在所給的坐標(biāo)系中作出函數(shù)f(x)的圖象;
(3)根據(jù)圖象寫(xiě)出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ≠±1,用sinθ表示cosθ和tanθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知-
π
2
<x<0,則sinx+cosx=
1
5

(I)求sinx-cosx的值;
(Ⅱ)求
3sin2
x
2
-2sin
x
2
cos
x
2
+cos
2x
2
tanx+
1
tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0°<α<360°,sinα-cosα=
2
2
,cos2α-sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司有價(jià)值a萬(wàn)元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對(duì)其進(jìn)行技術(shù)改造,從而提高產(chǎn)的附加值.改造需要投入,假設(shè)附加值y(萬(wàn)元)與技術(shù)改造投入x(萬(wàn)元)之間的關(guān)系滿足:①y與(a-x)和x2的乘積成正比;②當(dāng)x=
a
4
時(shí),y=
3a3
16
;③0≤
x
2(a-x)
≤t,其中常數(shù)t∈(0,2].
(1)設(shè)y=f(x),求函數(shù)f(x)的解析式并求f(x)的定義域;
(2)求出附加值y的最大值,并求此時(shí)的技術(shù)改造投入x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f:{1,
2
}→{1,
2
}滿足f[f(x)]>1的這樣的函數(shù)個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列有關(guān)命題的說(shuō)法正確的是( 。
A、命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B、若p∨q真命題,則p、q均為真命題
C、命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0”
D、“x=y”是“sinx=siny”的充分不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案