已知sinθ≠±1,用sinθ表示cosθ和tanθ.
考點(diǎn):同角三角函數(shù)間的基本關(guān)系
專題:三角函數(shù)的求值
分析:先利用同角三角函數(shù)間的基本關(guān)系表示出cosα,即可表示出tanα.
解答: 解:∵sin2α+cos2α=1,
∴cos2α=1-sin2α,
∴cosα=±
1-sin2α
,
∵sinθ≠±1∴1-sin2α≠0
∴tanα=
sinα
cosα
sinα
1-sin2α
點(diǎn)評(píng):本題考查了同角三角函數(shù)間基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵,屬于基礎(chǔ)知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=
1
2
xsinx.下列命題正確的是
 

①函數(shù)y=f(x)的圖象是中心對(duì)稱圖形,對(duì)稱中心是原點(diǎn);
②對(duì)任意實(shí)數(shù)x,|f(x)|≤
1
2
|x|均成立;
③函數(shù)y=f(x)的圖象與x軸有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
④函數(shù)y=f(x)的圖象與直線y=
1
2
x有無(wú)窮多個(gè)公共點(diǎn),且任意相鄰兩公共點(diǎn)間的距離相等;
⑤函數(shù)y=f(x)有無(wú)數(shù)個(gè)極大值點(diǎn),任意相鄰極大值點(diǎn)間的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓恒過(guò)點(diǎn)A(-
2
,0)且恒與定圓B:(x-
2
2+y2=12相切.
(1)求動(dòng)圓圓心C(2)的軌跡M(3)的方程;
(2)過(guò)點(diǎn)p(0,2)的直線l與軌跡M交于不同的兩點(diǎn)E、F,求
PE
PF
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,∠ACB=45°,BC=4,過(guò)動(dòng)點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示)

(1)當(dāng)BD的長(zhǎng)為多少時(shí),△BCD的體積最大;
(2)當(dāng)△BCD的體積最大時(shí),設(shè)點(diǎn)M為棱AC的中點(diǎn),試求直線BM與CD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓x2+2y2=8過(guò)點(diǎn)P(2,1)引一條弦且弦被點(diǎn)P平分,求弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2+3x+2,數(shù)列{an}滿足a1=a,且an+1=f′(an)(n∈N*),則該數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓過(guò)點(diǎn)(-2,0),(2,0),(0,3),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①若m>0,則方程x2-x+m=0有實(shí)根的逆否命題;
②若x>1,y>1,則x+y>2的逆命題;
③對(duì)任意的滿足x2>1的實(shí)數(shù)x,有x>1”的否定形式;
④△>0是一元二次方程ax2+bx+c=0有一正根和一負(fù)根的充要條件;
⑤若x2+y2≠0,則x,y不全為零”的否命題;
⑥“若x-3
1
2
是有理數(shù),則x是無(wú)理數(shù)”的逆否命題;
是真命題的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,公園有一塊邊長(zhǎng)為4的等邊△ABC的邊角地,現(xiàn)修成草坪,途中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x,ED=y,求用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉水管,為了節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里;
(3)如果DE是參觀線路,希望它最長(zhǎng),DE的位置又應(yīng)在哪里?

查看答案和解析>>

同步練習(xí)冊(cè)答案