18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{-{x^2}-1,}&{x≤0}\\{ln(x+1),}&{x>0}\end{array}}$,若f(x)≤ax,則a的取值范圍是( 。
A.[1,2]B.[1,+∞)C.[2,+∞]D.(-∞,1]

分析 分x>0,x≤0兩種情況進行討論,x>0時可知要使不等式恒成立,須有a≤0;x≤0時,再分x=0,x<0兩種情況討論,分離參數(shù)a后化為函數(shù)最值可求,注意最后對a范圍取交集.

解答 解:(1)當(dāng)x>0時,ln(x+1)>0,要使f(x)≤ax,即ln(x+1)≤ax恒成立,則此時a≥1.
(2)當(dāng)x≤0時,-x2-1≤ax,
若x=0,則左邊<右邊,a取任意實數(shù);
若x<0時,-x2-1≤ax可化為a≤-x-$\frac{1}{x}$,此時須滿足a≤2.
綜上可得,a的取值為[1,2],
故選A.

點評 本題考查函數(shù)恒成立問題,考查轉(zhuǎn)化思想、分類討論思想,考查學(xué)生分析解決問題的能力,恒成立問題常常轉(zhuǎn)化為函數(shù)最值解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足:a1=1,an+1=an+1,則數(shù)列{an}的通項公式an=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知點P(2,0),拋物線y2=4x,過P作斜率分別為k1,k2的兩條直線交拋物線于A,B,C,D四點,且M,N分別是線段AB,CD的中點.
(Ⅰ)若k1•k2=-1,求△PMN的面積的最小值;
(Ⅱ)若k1+k2=1,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在所有的兩位數(shù)中,個位數(shù)字大于十位數(shù)字的兩位數(shù)共有(  )個.
A.50B.45C.36D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.復(fù)數(shù)a+bi與c+di(a,b,c,d∈R)的積是純虛數(shù)的充要條件是( 。
A.ac-bd=0B.ad+bc=0
C.ac-bd≠0且ad+bc=0D.ac-bd=0且ad+bc≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex,g(x)=ax+b(a,b∈R).
(1)設(shè)h(x)=xg(x)+1.
①若a≠0,則a,b滿足什么條件時,曲線y=f(x)與y=h(x)在x=0處總有相同的切線?
②當(dāng)a=1時,求函數(shù)F(x)=$\frac{h(x)}{f(x)}$單調(diào)區(qū)間;
(2)若集合{x|f(x)<g(x)}為空集,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在R上的奇函數(shù)f(x)滿足f(-x)=f(x+$\frac{3}{2}$),f(2015)=2,則f(-2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$.
(1)判斷x的奇偶性,并證明;
(2)證明函數(shù)f(x)在(1,+∞)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若角α的終邊過點P(-1,3),則sinα的值為( 。
A.$\frac{3\sqrt{10}}{10}$B.-$\frac{\sqrt{10}}{10}$C.±$\frac{3\sqrt{10}}{10}$D.±$\frac{\sqrt{10}}{10}$

查看答案和解析>>

同步練習(xí)冊答案