11.在銳角△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=2$\sqrt{2}$,b=3,cosA=$\frac{\sqrt{3}}{3}$,則角B等于$\frac{π}{3}$.

分析 由已知利用同角三角函數(shù)基關(guān)系式可求sinA的值,利用正弦定理可求sinB的值,利用B為銳角,根據(jù)特殊角的三角函數(shù)值即可得解.

解答 解:在銳角△ABC中,∵a=2$\sqrt{2}$,b=3,cosA=$\frac{\sqrt{3}}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{6}}{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{\sqrt{6}}{3}}{2\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∵B為銳角,可得:B=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基關(guān)系式,正弦定理,特殊角的三角函數(shù)值在解三角形的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)a,b都是正數(shù),且a+b-2a2b2-6=0,則$\frac{1}{a}$+$\frac{1}$的最小值為4$\sqrt{3}$,此時(shí)ab的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.一個(gè)盒中有12個(gè)乒乓球,其中9個(gè)新的(未用過(guò)的球稱為新球),3個(gè)舊的(新球用一次即稱為舊球).現(xiàn)從盒子中任取3個(gè)球來(lái)用,用完后裝回盒中,設(shè)隨機(jī)變量X表示此時(shí)盒中舊球個(gè)數(shù).
(1)求盒中新球仍是9個(gè)的概率;
(2)求隨機(jī)變量X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.盒中共有9個(gè)球,其中紅球、黃球、籃球各3個(gè),這些球除顏色完全相同,從中一次隨機(jī)抽取n個(gè)球(1≤n≤9).
(1)當(dāng)n=3時(shí),記“抽取的三個(gè)小球恰有兩個(gè)小球顏色相同”為事件A,求P(A);
(2)當(dāng)n=4時(shí),用隨機(jī)變量X表示抽到的紅球的個(gè)數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,△ACD是正三角形,BD垂直平分AC,垂足為M,∠ABC=120°,PA=AB=1,PD=2,N為PD的中點(diǎn).
(1)求證:AD⊥平面PAB;
(2)求證:CN∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.sin780°等于(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.命題“?x∈(0,+∞),x+$\frac{4}{x}$<4”的否定的真假是真.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.“若x,y∈R,x2+y2=0,則x,y全為0”的逆否命題是( 。
A.若x,y∈R,x,y全不為0,則x2+y2≠0B.若x,y∈R,x,y不全為0,則x2+y2=0
C.若x,y∈R,x,y不全為0,則x2+y2≠0D.若x,y∈R,x,y全為0,則x2+y2≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{a}^{2}-i}{i}$(a∈R,i為虛數(shù)單位),若z+a2是純虛數(shù),則a的值為( 。
A.±1B.1C.-1D.0

查看答案和解析>>

同步練習(xí)冊(cè)答案