1.已知復(fù)數(shù)z=$\frac{{a}^{2}-i}{i}$(a∈R,i為虛數(shù)單位),若z+a2是純虛數(shù),則a的值為( 。
A.±1B.1C.-1D.0

分析 利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,又已知z+a2是純虛數(shù),列出方程組求解即可得答案.

解答 解:z=$\frac{{a}^{2}-i}{i}$=$\frac{-i({a}^{2}-i)}{-{i}^{2}}=-1-{a}^{2}i$,
z+a2=-1-a2i+a2=a2-1-a2i是純虛數(shù),
則$\left\{\begin{array}{l}{{a}^{2}-1=0}\\{-{a}^{2}≠0}\end{array}\right.$,解得a=±1.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在銳角△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,若a=2$\sqrt{2}$,b=3,cosA=$\frac{\sqrt{3}}{3}$,則角B等于$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點(diǎn)為F1,F(xiàn)2,P為橢圓C上一點(diǎn),且PF2⊥x軸,若△PF1F2的內(nèi)切圓半徑r=$\frac{c}{2}$,則橢圓C的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,m),若$\overrightarrow{a}$∥$\overrightarrow{a}$+2$\overrightarrow$,則m=( 。
A.4B.-6C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一個奇函數(shù),則滿足f(2-x2)+f(x)<0的x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)關(guān)于x、y的不等式組$\left\{\begin{array}{l}{x+y≥1}\\{x-2y≥t}\\{3x-2y≤3}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點(diǎn)M(x0,y0),滿足x0+2y0=5,則實(shí)數(shù)t的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知如圖底面ABC為直角三角形,∠C=90°,PA⊥平面ABC,求證:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1 的一個實(shí)軸端點(diǎn)恰與拋物線y2=-4x 的焦點(diǎn)重合,且雙曲線的離心率等于2,則該雙曲線的方程為x2-$\frac{y^2}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)作出函數(shù)y=|x-2|的圖象,并說明函數(shù)y=|x-2|的圖象與函數(shù)y=|x|的圖象之間的關(guān)系;
(2)試探究函數(shù)y=|x-2|+1的圖象與函數(shù)y=|x|的圖象之間的關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案