解不等式:(x-1)(x+2)(x-4)>0.
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:要求的不等式即 (x-1)(x+2)(x-4)<0,用穿根法求得它的解集.
解答: 解:要求的不等式即(x-1)(x+2)(x-4)<0,
用穿根法求得它的解集為(-∞,-2)∪(1,4).
點評:本題主要考查用穿根法解高次不等式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若圓x2+y2-2kx+2y+2=0(k>0)與兩坐標軸無公共點,那么實數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=2,點E,F(xiàn),G分別為PC,PD,BC的中點.
(Ⅰ)求證:PA∥平面EFG;
(Ⅱ)求三棱錐P-EFG的體積;
(Ⅲ)求四棱錐P-ABCD被平面EFG所截得到的兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)=|t(x+
4
x
)-5|,其中常函數(shù)t>0
(1)若函數(shù)f(x)分別在區(qū)間(0,2),(2,+∞)上單調(diào),試求t的取值范圍;
(2)當(dāng)t=1時,方程f(x)=m有四個不等實根x1,x2,x3,x4 
①證明:x1•x2•x3•x4=16;
②是否存在實數(shù)a,b,使得函數(shù)f(x)在區(qū)間[a,b]上單調(diào),且f(x)的取值范圍為[ma,mb],若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
9x
9x+3

(1)求證:f(x)+f(1-x)=1;
(2)若f(x)+f(1-x)=1,根據(jù)f(x)=
9x
9x+3
,寫出一個更為一般的函數(shù)g(x);
(3)計算:f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的一個焦點為F(-2,0),且長軸長與短軸長的比是2:
3

(1)求橢圓C的標準方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,點P是橢圓上任意一點,記|
MP
|的最小值為f(m)若關(guān)于實數(shù)m的方程f(m)-2t=0有解,請求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=4y的弦AB垂直于y軸,若AB=4
3
,則焦點到AB的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:4x2+y2=1及直線L:y=x+m.
(1)當(dāng)直線L和橢圓C有公共點時,求實數(shù)m的取值范圍;
(2)當(dāng)直線L被橢圓C截得的弦最長時,求直線L所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)為定義在R上的奇函數(shù),f(x+2)=-f(x).當(dāng)x∈[-1,0]時,f(x)=f0(x)=x3
(1)當(dāng)x∈[1,3]時,求y=f1(x)的解析式;
(2)記y=f(x),x∈(4k-1,4k+1],k∈Z為y=fk(x),求y=fk(x)及其反函數(shù)y=fk-1(x)的解析式;
(3)定義g(x)=2k+(-1)kf(x),其中x∈[2k-1,2k+1],探究方程g(x)-b=0(b>0)在區(qū)間[-2013,2013]上的解的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案