分析 由已知中多面體ABCDEF中,已知面ABCD是邊長為3的正方形,EF與面AC的距離為2,我們易求出四棱錐E-ABCD的體積,然后根據(jù)由題意求出VF-ABCD與幾何體的體積,即可得到正確選項.
解答 解:∵多面體ABCDEF中,
面ABCD是邊長為3的正方形,
EF∥AB,平面FBC⊥面ABCD,
△FBC中BC邊上的高FH=2,EF=$\frac{3}{2}$,
∴EF∥平面ABCD,
則G到平面ABCD的距離2,
將幾何體變形如圖,使得FG=AB,
三棱錐E-BCG的體積為:$\frac{1}{3}$×$\frac{1}{2}$×3×2×$\frac{3}{2}$=$\frac{3}{2}$,
∴原幾何體的體積為:$\frac{1}{2}$×3×2×3-$\frac{3}{2}$=$\frac{15}{2}$.
點評 本題考查的知識點是組合幾何體的面積、體積問題,是?碱}目.本題可以直接求解,但是麻煩.解答組合體問題的常用方法是分割法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,3] | B. | (1,2]∪[3,+∞) | C. | [3,+∞) | D. | (0,2]∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $\frac{{5\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | 3 | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com