8.某公司的班車(chē)在7:00,8:00,8:30發(fā)車(chē),小明在7:50至8:30之間到達(dá)發(fā)車(chē)站乘坐班車(chē),且到達(dá)發(fā)車(chē)站的時(shí)刻是隨機(jī)的,則他等車(chē)時(shí)間不超過(guò)10分鐘的概率是$\frac{1}{2}$.

分析 本題屬于幾何概型,只要求出小明等車(chē)時(shí)間不超過(guò)10分鐘的時(shí)間長(zhǎng)度,代入幾何概型概率計(jì)算公式,可得答案

解答 解:小明在7:50至8:30之間到達(dá)發(fā)車(chē)站乘坐班車(chē),總時(shí)長(zhǎng)為40分鐘,
設(shè)小明到達(dá)時(shí)間為y,
當(dāng)y在7:50至8:00,或8:20至8:30時(shí),
小明等車(chē)時(shí)間不超過(guò)10分鐘的時(shí)長(zhǎng)為20分鐘,
由幾何概型的公式得到故P=$\frac{20}{40}=\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是幾何概型,明確時(shí)間段,利用幾何概型公式解答;屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)全集U={0,1,2,3,4},集合A={0,1,3},集合B={2,3},則∁U(A∪B)=(  )
A.{4}B.{0,1,2,3}C.{3}D.{0,1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,多面體ABCDEF中,已知面ABCD是邊長(zhǎng)為3的正方形,EF∥AB,平面FBC⊥平面ABCD.△FBC中BC邊上的高FH=2,EF=$\frac{3}{2}$.求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知$f(x)=sin({2x-\frac{π}{6}})-cos({2x+\frac{π}{3}})+a$
(1)把y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把所得圖象上所有點(diǎn)向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象,求函數(shù)y=g(x)的解析式;
(2)y=g(x)在$[0,\frac{π}{2}]$上最大值與最小值之和為5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知復(fù)數(shù)z1=cosα+isinα,z2=cosβ+isinβ,則復(fù)數(shù)z1•z2的實(shí)部是cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)y=sinx+cosx的單調(diào)遞增區(qū)間為[2kπ-$\frac{3π}{4}$,2kπ+$\frac{π}{4}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<5}\\{f(x-1),x≥5}\end{array}\right.$,f(6)的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.以下給出關(guān)于向量的四個(gè)結(jié)論:
①$\overrightarrow a•\overrightarrow b-\overrightarrow b•\overrightarrow a=0$;     
②$(\overrightarrow a+\overrightarrow b)•\overrightarrow c=\overrightarrow a•\overrightarrow c+\overrightarrow b•\overrightarrow c$;     
③$|\overrightarrow a•\overrightarrow b|=|\overrightarrow a|•|\overrightarrow b|$;
④若$|\overrightarrow a|≠|(zhì)\overrightarrow b|$,則$\overrightarrow a≠\overrightarrow b$;
其中正確結(jié)論的序號(hào)是①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若一個(gè)空間幾何體的三視圖如圖所示,且已知該幾何體的體積為$\frac{\sqrt{3}}{6}π$,則其表面積為(  )
A.$\frac{3}{2}π+\sqrt{3}$B.$\frac{3}{2}π$C.$\frac{3}{4}π+2\sqrt{3}$D.$\frac{3}{4}π+\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案