參數(shù)方程
x=sinα+cosα
y=sinα-cosα
(α為參數(shù))表示的圖形是
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:利用平方關(guān)系即可得出.
解答: 解:由x2+y2=(sinα+cosα)2+(sinα-cosα)2=2,
可得此參數(shù)方程表示的圖形是以原點(diǎn)(0,0)為圓心、
2
為半徑的圓.
故答案為:圓x2+y2=2.
點(diǎn)評(píng):本題考查了同角三角函數(shù)基本關(guān)系式、圓的方程,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:|x-a|<1,q:
1
2
<x<
3
2
,若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
(1)若D是BC的中點(diǎn).求證:AD⊥CC1;
(2)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C;
(3)若截面MBC1⊥側(cè)面BB1C1C..求證:AM=MA1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線C:y2=2px(p>0)的焦點(diǎn)為F,M是拋物線C上的點(diǎn),若三角形OFM的外接圓與拋物線C的準(zhǔn)線相切,且該圓的面積為36π,則P的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,在圓x2+y2=4上任取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡為C.
(1)求C的參數(shù)方程;
(2)直線l的參數(shù)方程為
x=1+
2
2
t
y=-1+
2
2
t
(t為參數(shù)),點(diǎn)F(1,-1),已知l與曲線C交于A、B兩點(diǎn),求|AF|+|BF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,且S3恰是a4與a12的等比中項(xiàng).
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)證明:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將參數(shù)方程
x=a+γ•cosθ
y=b+γ•sinθ
化為普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面兩個(gè)程序最后輸出的“sum”應(yīng)分別等于(  )
A、都是17B、都是21
C、21和17D、14和21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)銷售量為x,總利潤(rùn)為L(zhǎng)=L(x)時(shí),稱L′(x)為銷售量為x的邊際利潤(rùn),它近似等于銷售量為x時(shí),再多銷售一個(gè)單位所增加或減少的利潤(rùn).某糕點(diǎn)加工廠生產(chǎn)A類糕點(diǎn)的總成本函數(shù)和總收入函數(shù)分別是C(x)=100+2x+0.02x2,R(x)=7x+0.01x2.求邊際利潤(rùn)函數(shù)和當(dāng)日產(chǎn)量分別是200Kg,250Kg和300Kg時(shí)的邊際利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案