【題目】已知函數(shù)

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),,證明:

【答案】(1)時(shí),單調(diào)遞增;時(shí),在區(qū)間,單調(diào)遞增;在區(qū)間單調(diào)遞減.(2)見解析

【解析】

(1)求出導(dǎo)函數(shù),然后根據(jù)方程的判別式得到導(dǎo)函數(shù)的符號(hào),進(jìn)而得到函數(shù)的單調(diào)性;(2)由題意得到方程有兩個(gè)根,故可得,且.然后可得,最后利用導(dǎo)數(shù)可證得,從而不等式成立.

(1),

①當(dāng),即時(shí),,

所以單調(diào)遞增;

②當(dāng),即時(shí),

,得,,且,,

當(dāng)時(shí),;

當(dāng)時(shí),

單調(diào)遞增區(qū)間為,;

單調(diào)遞減區(qū)間為

綜上所述:當(dāng)時(shí),單調(diào)遞增;

時(shí),在區(qū)間單調(diào)遞增;在區(qū)間單調(diào)遞減.

(2)(1)

∵函數(shù)有兩個(gè)極值點(diǎn),

∴方程有兩個(gè)根,

,且,解得

由題意得

,

上單調(diào)遞減,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中、是非空數(shù)集,且,設(shè),

1)若,,求;

2)是否存在實(shí)數(shù),使得,且?若存在,請(qǐng)求出滿足條件的實(shí)數(shù);若不存在,請(qǐng)說明理由;

3)若,且,是單調(diào)遞增函數(shù),求集合;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中.

1)討論函數(shù)的極值;

2)對(duì)任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】趙爽是我國古代數(shù)學(xué)家、天文學(xué)家大約在公元222年趙爽為《周碑算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的)類比“趙爽弦圖”,趙爽弦圖可類似地構(gòu)造如圖所示的圖形,它是由個(gè)3全等的等邊三角形與中間的一個(gè)小等邊三角形組成的一個(gè)大等邊三角形,設(shè)DF2AF,若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職業(yè)學(xué)校有2000名學(xué)生,校服務(wù)部為了解學(xué)生在校的月消費(fèi)情況,隨機(jī)調(diào)查了100名學(xué)生,并將統(tǒng)計(jì)結(jié)果繪成直方圖如圖所示.

(1)試估計(jì)該校學(xué)生在校月消費(fèi)的平均數(shù);

(2)根據(jù)校服務(wù)部以往的經(jīng)驗(yàn),每個(gè)學(xué)生在校的月消費(fèi)金額(元)和服務(wù)部可獲得利潤(元),滿足關(guān)系式:根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答下列問題:

(i)將校服務(wù)部從一個(gè)學(xué)生的月消費(fèi)中,可獲得的利潤記為,求的分布列及數(shù)學(xué)期望.

(ii)若校服務(wù)部計(jì)劃每月預(yù)留月利潤的,用于資助在校月消費(fèi)低于400元的學(xué)生,估計(jì)受資助的學(xué)生每人每月可獲得多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,大學(xué)生的微信好友中有400位好友參與了“微信運(yùn)動(dòng)”.他隨機(jī)抽取了40位參與“微信運(yùn)動(dòng)”的微信好友(女20人,男20人)在某天的走路步數(shù),經(jīng)統(tǒng)計(jì),其中女性好友走路的步數(shù)情況可分為五個(gè)類別:、02000步,(說明:“02000”表示“大于或等于0,小于2000”,以下同理),、20005000步,、50008000步,、800010000步,1000012000步,且三種類別的人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的柱形圖;男性好友走路的步數(shù)數(shù)據(jù)繪制如圖所示的頻率分布直方圖.

參與者

超越者

合計(jì)

20

20

合計(jì)

40

若某人一天的走路步數(shù)大于或等于8000,則被系統(tǒng)認(rèn)定為“超越者”,否則被系統(tǒng)認(rèn)定為“參與者”.

()若以大學(xué)生抽取的微信好友在該天行走步數(shù)的頻率分布,作為參與“微信運(yùn)動(dòng)”的所有微信好友每天走路步數(shù)的概率分布,試估計(jì)大學(xué)生的參與“微信運(yùn)動(dòng)”的400位微信好友中,每天走路步數(shù)在20008000的人數(shù);

()若在大學(xué)生該天抽取的步數(shù)在800012000的微信好友中,按男女比例分層抽取9人進(jìn)行身體狀況調(diào)查,然后再從這9位微信好友中隨機(jī)抽取4人進(jìn)行采訪,求其中至少有一位女性微信好友被采訪的概率;

()請(qǐng)根據(jù)抽取的樣本數(shù)據(jù)完成下面的列聯(lián)表,并據(jù)此判斷能否有的把握認(rèn)為“認(rèn)定類別”與“性別”有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面是等腰梯形,,,點(diǎn)的中點(diǎn),以為邊作正方形,且平面平面.

1)證明:平面平面.

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若上恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對(duì)兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:

若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級(jí),利用分層抽樣的方法抽取10件,再從這10件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;

將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案