若函數(shù)y=f(x)=x2-2x+4的定義域、值域都是閉區(qū)間[2,2b],求b的值.

∵y=f(x)=(x2-4x+8)=(x-2)2+2,
∴其圖象的對(duì)稱軸是x=2.
因此y=f(x)在[2,2b]上是遞增函數(shù),且2b>2,即b>1.
又函數(shù)y=f(x)=x2-2x+4的定義域、值域都是閉區(qū)間[2,2b],所以有f(2b)=2b,即(2b)2-2×2b+4=2b,
∴b2-3b+2=0,∴b=1(舍去),b=2. 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)集合A是由具備下列性質(zhì)的函數(shù)f(x)組成的:
①函數(shù)f(x)的定義域是[0,+∞);
②函數(shù)f(x)的值域是[-2,4);
③函數(shù)f(x)在[0,+∞)上是增函數(shù),試分別探究下列兩小題:
(1)判斷函數(shù)f1(x)=-2(x≥0)及f2(x)=4-6·x(x≥0)是否屬于集合A?并簡(jiǎn)要說(shuō)明理由;
(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù)f(x),不等式f(x)+f(x+2)<2f(x+1)是否對(duì)于任意的x≥0恒成立?若不成立,為什么?若成立,請(qǐng)說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x恒滿足f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2.
(1)求證:f(x)是周期函數(shù).
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式.
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2011)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=x2+x-.
(1)若函數(shù)的定義域?yàn)閇0,3],求f(x)的值域;
(2)若定義域?yàn)閇a,a+1]時(shí),f(x)的值域是[-,],求a的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

f (x)是偶函數(shù),且在(0,+∞)上是增函數(shù),若x∈[,1]時(shí),不等式f (ax+1)≤f (x-2)恒成立,則求實(shí)數(shù)a的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長(zhǎng)線上,N在AD的延長(zhǎng)線上,且對(duì)角線MN過(guò)C點(diǎn)。已知AB=3米,AD=2米。設(shè)(單位:米),若(單位:米),則當(dāng)AM,AN的長(zhǎng)度分別是多少時(shí),花壇AMPN的面積最大?并求出最大面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米。
(Ⅰ)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),, 其中是不等于零的常數(shù),
(1)、(理)寫(xiě)出的定義域(2分);
(文)時(shí),直接寫(xiě)出的值域(4分)
(2)、(文、理)求的單調(diào)遞增區(qū)間(理5分,文8分);
(3)、已知函數(shù),定義:.其中,表示函數(shù)上的最小值,
表示函數(shù)上的最大值.例如:,,則 ,   ,
(理)當(dāng)時(shí),設(shè),不等式
恒成立,求的取值范圍(11分);
(文)當(dāng)時(shí),恒成立,求的取值范圍(8分);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,互相垂直的兩條公路、旁有一矩形花園,現(xiàn)欲將其擴(kuò)建成一個(gè)更大的三角形花園,要求在射線上,在射線上,且過(guò)點(diǎn),其中米,米. 記三角形花園的面積為.
(1)設(shè)米,將表示成的函數(shù).
(2)當(dāng)的長(zhǎng)度是多少時(shí),最小?并求的最小值.
(3)要使不小于平方米,則的長(zhǎng)應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案