8.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+\frac{11}{3}}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓N的方程為ρ2-6ρsinθ=-8
(1)求圓N的圓心N的極坐標(biāo);
(2)判斷直線l與圓N的位置關(guān)系.

分析 (1)求出圓N的直角坐標(biāo)方程為x2+y2-6y+8=0,從而得到圓心N的直角坐標(biāo)為N(0,3),由此能求出圓心N的極坐標(biāo).
(2)求出直線l的普通方程為3x+4y-7=0,圓N的圓心N(0,3),半徑r=1,求出圓心N(0,3)到直線l的距離d=r,從而直線l與圓N相切.

解答 解:(1)∵圓N的方程為ρ2-6ρsinθ=-8,
∴圓N的直角坐標(biāo)方程為x2+y2-6y+8=0,
∴圓心N的直角坐標(biāo)為N(0,3),
∴$ρ=\sqrt{{0}^{2}+{3}^{2}}$=3,$θ=\frac{π}{2}$,
∴圓心N的極坐標(biāo)為N(3,$\frac{π}{2}$).
(2)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-4t+\frac{11}{3}}\\{y=3t-1}\end{array}\right.$(t為參數(shù)),
∴直線l的普通方程為3x+4y-7=0,
由(1)知,圓N的圓心N(0,3),半徑r=1,
圓心N(0,3)到直線l的距離d=$\frac{|0+12-7|}{\sqrt{9+16}}$=1,
∴直線l與圓N相切.

點(diǎn)評(píng) 本題考查圓心的極坐標(biāo)求法,考查直線與圓的位置關(guān)系的判斷,考查圓、直線方程、極坐標(biāo)、直角坐標(biāo)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+bx+c的頂點(diǎn)為(1,-1).
(1)解不等式|f(-x)|+|f(x)|≥4|x|;
(2)若實(shí)數(shù)a滿足$|x-a|<\frac{1}{2}$,求證:$|f(x)-f(a)|<|a|+\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知2acosA=ccosB+bcosC.
(Ⅰ)求cosA的值;
(Ⅱ)若a=1,cos2$\frac{B}{2}$+cos2$\frac{C}{2}$=1+$\frac{\sqrt{3}}{4}$,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線y=4x與曲線y=4x2在第一象限圍成的封閉圖形的圖形的面積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列說法正確的有②③④.(填正確命題的序號(hào))
①用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻畫回歸效果,當(dāng)R2越大時(shí),模型的擬合效果越差;反之,則越好;
②可導(dǎo)函數(shù)f(x)在x=x0處取得極值,則f′(x0)=0;
③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理;
④綜合法證明數(shù)學(xué)問題是“由因索果”,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知x,y是實(shí)數(shù),i是虛數(shù)單位,$\frac{x}{1+i}=1-yi$,則復(fù)數(shù)x+yi在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,F(xiàn)1、F2分別為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦點(diǎn),過F1的直線l交C于A、B兩點(diǎn),若C的離心率為$\sqrt{7}$,|AB|=|AF2|,則直線l的斜率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=lnx-2\sqrt{x}$的最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡$\frac{{cos({{180}°}+α)•sin(α+{{360}°})}}{{sin(-α-{{180}°})•cos(-{{180}°}-α)}}$.
(2)已知$tanα=-\frac{3}{4}$,求$\frac{{cos(\frac{π}{2}+α)•sin(-π-α)}}{{cos(\frac{11π}{2}-α)•sin(\frac{11π}{2}+α)}}$的值.

查看答案和解析>>

同步練習(xí)冊答案