分析 ( I)通過an+2=2an+1-an(n∈N*),判斷{an}是等差數(shù)列,利用s5=70,a2,a7,a22成等比數(shù)列求解數(shù)列的首項與公差,然后求解通項公式.
( II)求出${s_n}=2{n^2}+4n$,化簡它的倒數(shù),利用裂項消項法求解數(shù)列的和,利用數(shù)列的單調(diào)性證明不等式.
解答 (本小題滿分12分)
解:( I)因為數(shù)列滿足an+2=2an+1-an(n∈N*),所以{an}是等差數(shù)列且s5=70,
∴5a1+10d=70.①…(1分)
∵a2,a7,a22成等比數(shù)列,∴$a_7^2={a_2}{a_{22}}$,
即${({a_1}+6d)^2}=({a_1}+d)({a_1}+21d)$.②…(3分)
由①,②解得a1=6,d=4或a1=14,d=0(舍去),…(4分)
∴an=4n+2.…(5分)
( II)證明:由( I)可得${s_n}=2{n^2}+4n$,
所以$\frac{1}{s_n}=\frac{1}{{2{n^2}+4n}}=\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$.…(6分)
所以${T_n}=\frac{1}{s_1}+\frac{1}{s_2}+\frac{1}{s_3}+…+\frac{1}{{{s_{n-1}}}}+\frac{1}{s_n}$=$\frac{1}{4}(\frac{1}{1}-\frac{1}{3})+\frac{1}{4}(\frac{1}{2}-\frac{1}{4})+\frac{1}{4}(\frac{1}{3}-\frac{1}{5})+…+\frac{1}{4}(\frac{1}{n-1}-\frac{1}{n+1})+\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$
=$\frac{3}{8}-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})$.…(8分)
∵${T_n}-\frac{3}{8}=-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})<0$,∴${T_n}<\frac{3}{8}$.…(10分)
∵${T_{n+1}}-{T_n}=\frac{1}{4}(\frac{1}{n+1}-\frac{1}{n+3})>0$,∴數(shù)列{Tn}是遞增數(shù)列,∴${T_n}≥{T_1}=\frac{1}{6}$.…(11分)
∴$\frac{1}{6}≤{T_n}<\frac{3}{8}$.…(12分)
點評 本題考查數(shù)列的應(yīng)用,通項公式的求法,裂項消項法的應(yīng)用,數(shù)列的單調(diào)性的應(yīng)用,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (4,$\frac{5π}{6}$) | B. | (4,$\frac{2π}{3}$) | C. | (4,$\frac{5π}{3}$) | D. | (4,$\frac{11π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{\sqrt{3}}{3}$) | B. | (-∞,$\frac{\sqrt{3}}{3}$] | C. | (-∞,-$\frac{\sqrt{3}}{3}$) | D. | (-∞,-$\frac{\sqrt{3}}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
A組 | B組 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com