精英家教網 > 高中數學 > 題目詳情
13.已知△ABC的三邊a,b,c的倒數成等差數列,試分別用綜合法和分析法證明:B為銳角.

分析 根據余弦定理和基本不等式,利用分析法和綜合法即可證明.

解答 解:分析法:欲證∠B為銳角,即證cosB>0,
即證$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$>0,
即證:a2+c2>b2,
由于$\frac{2}$=$\frac{1}{a}$+$\frac{1}{c}$,
即證a2+c2>($\frac{2ac}{a+c}$)2,
即證(a2+c2)(a+c)2>4a2c2,
考慮到a2+c2≥2ac,(a+c)2≥4ac,
所以(a2+c2)(a+c)2≥8a2c2>4a2c2,
所以∠B為銳角
綜合法:∵$\frac{2}$=$\frac{1}{a}$+$\frac{1}{c}$,
∴a2+c2≥2ac,(a+c)2≥4ac,
∴(a2+c2)(a+c)2≥8a2c2>4a2c2
∴a2+c2>($\frac{2ac}{a+c}$)2
又∵$\frac{2}$=$\frac{1}{a}$+$\frac{1}{c}$,
∴a2+c2>b2,
即cosB>0,
∴∠B為銳角

點評 本題考查了利用綜合法及分析法證明,關鍵是掌握綜合法與分析法的原理、步驟及格式

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.(1)計算:${[{{{({3\frac{13}{81}})}^{-3}}}]^{\frac{1}{6}}}$-lg$\frac{1}{100}-{(ln\sqrt{e})^{-1}}$$+{0.1^{-2}}-{(2+\frac{10}{27})^{-\frac{2}{3}}}$$-{(\frac{1}{{2+\sqrt{3}}})^0}$$+{2^{-1-{{log}_2}\frac{1}{6}}}$
(2)已知tan(π-α)=-2; 求sin2(π+α)+sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知函數f(x)=$\left\{\begin{array}{l}{2a-x-\frac{4}{x}-3,x∈(-∞,a)}\\{x-\frac{4}{x}-3,x∈[a,+∞)}\end{array}\right.$有且只有3個不同的零點x1,x2,x3(x1<x2<x3),且2x2=x1+x3,則a=-$\frac{11}{6}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知拋物線C1,:y2=2px上一點M(3,y0)到其焦點F的距離為4,橢圓C2:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且過拋物線的焦點F.
(1)求拋物線C1和橢圓C2的標準方程;
(2)過點F的直線l1交拋物線C1交于A,B兩不同點,交y軸于點N,已知$\overrightarrow{NA}$=$λ\overrightarrow{AF}$,$\overrightarrow{NB}$=μ$\overrightarrow{BF}$,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖所示,AC=BC=1,∠ACB-90°,PA⊥平面ABC,CE∥PA,PA=2CE=2,
(1)求證:平面EPB⊥平面APB
(2)求二面角A-BE-P的正弦.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.兩個線性相關變量滿足如下關系:則y對x的回歸方程是( 。
x23456
y2.23.85.56.57.0
A.$\widehat{y}$=0.87x+0.32B.$\widehat{y}$=3.42x-3.97C.$\widehat{y}$═1.23x+0.08D.$\widehat{y}$═2.17x+32.1

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.曲線y=$\sqrt{x}$在矩陣$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$作用下變換所得的圖形對應的曲線方程是y=x2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

2.設f(x)是定義在正整數集上的函數,且滿足:對于定義域內任意的k,若f(k)≥k2成立,則f(k+1)≥(k+1)2成立.則下列命題正確的是( 。
A.若f(3)≥9成立,則對于任意k∈N*,均有f(k)≥k2成立
B.若f(3)≥9成立,則對于任意k≥3,k∈N*,均有f(k)<k2成立
C.若f(3)≥9成立,則對于任意k<3,k∈N*,均有f(k)<k2成立
D.若f(3)=9成立,則對于任意k≥3,k∈N*,均有f(k)≥k2成立

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.tan$\frac{11π}{6}$的值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步練習冊答案