【題目】若實(shí)數(shù),滿足,則的最小值是( )

A. 0 B. C. -6 D. -3

【答案】C

【解析】

畫出可行域,向上平移目標(biāo)函數(shù)到可行域邊界的位置,由此求得目標(biāo)函數(shù)的最小值.

畫出可行域如下圖所示,由圖可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值為.故選C.

【點(diǎn)睛】

本小題主要考查線性規(guī)劃的知識(shí),考查線性目標(biāo)函數(shù)的最值的求法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.畫可行域時(shí),要注意判斷不等式所表示的范圍是在直線的哪個(gè)方位,不一定是三條直線圍成的三角形.還要注意目標(biāo)函數(shù)化成斜截式后,截距和目標(biāo)函數(shù)的對(duì)應(yīng)關(guān)系,截距最大時(shí),目標(biāo)函數(shù)不一定取得最大值,可能取得最小值.

型】單選題
結(jié)束】
12

【題目】已知,是橢圓長(zhǎng)軸上的兩個(gè)端點(diǎn),,是橢圓上關(guān)于軸對(duì)稱的兩點(diǎn),直線,的斜率分別為,若橢圓的離心率為,則的最小值為( )

A. 1 B. C. D. 2

【答案】A

【解析】

不妨設(shè)是橢圓的上下頂點(diǎn),求出直線的斜率,相加得到,結(jié)合選項(xiàng)可得出的最小值.

由于橢圓的離心率為,即,解得.不妨設(shè)是橢圓的上下頂點(diǎn),即,而,故,.四個(gè)選項(xiàng)中的值最小,故本小題選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:已知函數(shù)上的最小值為,若恒成立,則稱函數(shù)上具有性質(zhì).

)判斷函數(shù)上是否具有性質(zhì)?說(shuō)明理由.

)若上具有性質(zhì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱中,側(cè)棱底面,,,,棱的中點(diǎn).

(1)證明;

(2)求二面角的余弦值;

(3)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關(guān)于t的不等式f(t22t)f(2t2k)0的解集非空,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①若是定義在上的偶函數(shù),且在上是增函數(shù),,則;

②若銳角、滿足c,則

③若,則對(duì)恒成立;

④要得到的圖像,只需將的圖像向右平移個(gè)單位:

其中真命題的個(gè)數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓上一動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),則線段中點(diǎn)的軌跡方程為_______

【答案】

【解析】

設(shè)出點(diǎn)的坐標(biāo),由此得到點(diǎn)的坐標(biāo),將點(diǎn)坐標(biāo)代入橢圓方程,化簡(jiǎn)后可得點(diǎn)的軌跡方程.

設(shè),由于中點(diǎn),故,代入橢圓方程得,化簡(jiǎn)得.點(diǎn)的軌跡方程為.

【點(diǎn)睛】

本小題主要考查代入法求動(dòng)點(diǎn)的軌跡方程,考查中點(diǎn)坐標(biāo),屬于基礎(chǔ)題.

型】填空
結(jié)束】
15

【題目】設(shè)是雙曲線:的右焦點(diǎn),左支上的點(diǎn),已知,則周長(zhǎng)的最小值是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為.(注:利潤(rùn)與投資金額單位:萬(wàn)元)

(1)該公司已有100萬(wàn)元資金,并全部投入,兩種產(chǎn)品中,其中萬(wàn)元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫出定義域;

(2)試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

【答案】(1);(2)20,28.

【解析】

1)設(shè)投入產(chǎn)品萬(wàn)元,則投入產(chǎn)品萬(wàn)元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤(rùn)的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤(rùn)總和的表達(dá)式.2)利用基本不等式求得利潤(rùn)的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.

(1)其中萬(wàn)元資金投入產(chǎn)品,則剩余的(萬(wàn)元)資金投入產(chǎn)品,

利潤(rùn)總和為: ,

(2)因?yàn)?/span>,

所以由基本不等式得:,

當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤(rùn)28萬(wàn).

此時(shí)投入A產(chǎn)品20萬(wàn)元,B產(chǎn)品80萬(wàn)元.

【點(diǎn)睛】

本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問(wèn)題,考查利用基本不等式求最大值,屬于中檔題.

型】解答
結(jié)束】
20

【題目】已知曲線.

(1)求曲線在處的切線方程;

(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了改善居民的休閑娛樂活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路、,要求點(diǎn)的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.

1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問(wèn)如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C的方程為,以為極點(diǎn), 軸的非負(fù)半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程;

(2)設(shè)為橢圓上任意一點(diǎn),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案