分析 曲線C的極坐標(biāo)方程轉(zhuǎn)化為ρsinθ-ρcosθ=2,由此能求出C的直角坐標(biāo)方程.
解答 解:∵曲線C的極坐標(biāo)方程為$ρsin(θ-\frac{π}{4})=\sqrt{2}$,
∴$ρ(sinθcos\frac{π}{4}-cosθsin\frac{π}{4})$=$\frac{\sqrt{2}}{2}ρsinθ-\frac{\sqrt{2}}{2}ρcosθ$=$\sqrt{2}$,
∴ρsinθ-ρcosθ=2,
∴C的直角坐標(biāo)方程為y-x=2,取x-y+2=0.
故答案為:x-y+2=0.
點評 本題考查曲線的直角坐標(biāo)方程的求法,涉及到直角坐標(biāo)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)尖子生 | 數(shù)學(xué)尖子生 | 合計 | |
男生 | |||
女生 | |||
合計 | 100 |
P(K2≥k2) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,-4) | B. | (-5,0) | C. | (-4,0) | D. | (-5,-3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $2\sqrt{3}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com