20.一個箱子里裝有7只好燈泡、3只壞燈泡,從中取兩次,每次任取一只,每次取后不放回,已知第一次取到的是好燈泡,則第二次取到的還是好燈泡的概率是( 。
A.$\frac{2}{3}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{1}{3}$

分析 第一次取到的是好燈泡后,箱子里還有6只好燈泡,3只壞燈泡,由此能求出若第一次取到的是好燈泡,則第二次也取到好燈泡的概率.

解答 解:一個箱子里裝有7只好燈泡、3只壞燈泡,從中取兩次,每次任取一只,每次取后不放回,
第一次取到的是好燈泡后,
箱子里還有6只好燈泡,3只壞燈泡,
所以若第一次取到的是好燈泡,則第二次也取到好燈泡的概率是:
p=$\frac{6}{9}$=$\frac{2}{3}$.
故選:A.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=2+$\frac{1}{x-a}$的圖象經(jīng)過點(2,3),a為常數(shù).
(1)求a的值和函數(shù)f(x)的定義域;
(2)用函數(shù)單調(diào)性定義證明f(x)在(a,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+\frac{4}{e},x<0\\ \frac{2x}{e^x},x≥0\end{array}\right.$若f(x1)=f(x2)=f(x3)(x1<x2<x3),則$\frac{{f({x_2})}}{x_1}$的范圍是(-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足2Sn=an2+n-16.
(1)求a1,a2,a3的值,猜想數(shù)列{an}的通項公式并用數(shù)學歸納方法證明.
(2)令bn=$\frac{{a}_{n}-4}{{2}^{{a}_{n}-4}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,定義域為R的偶函數(shù)是(  )
A.y=$\sqrt{{x}^{2}-1}$B.y=ex-e-xC.y=ln|x|D.y=x${\;}^{\frac{2}{3}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+bx+1}$是定義在R上的奇函數(shù),則f(1)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.2016年1月1日起全國統(tǒng)一實施全面兩孩政策,為了解適齡民眾對放開生育二胎政策的態(tài)度,某市選取70后,80后作為調(diào)查對象,隨機調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計
70后301545
80后451055
合計7525100
(1)根據(jù)調(diào)查數(shù)據(jù),判斷是否有90%以上把握認為“生二胎與年齡有關(guān)”,并說明理由,參考數(shù)據(jù)如下:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(2)以選100人的樣本數(shù)據(jù)估計該市的總體數(shù)據(jù),且以頻率估計概率,若從該市70后公民中(人數(shù)很多)隨機抽取3位,求3人中生二胎的人數(shù)為1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知向量$\overrightarrow a$=(5,0),$\overrightarrow b$=(-2,1),$\overrightarrow b$⊥$\overrightarrow c$,且$\overrightarrow a$=t$\overrightarrow b$+$\overrightarrow c$(t∈R),則t=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知全集I={1,2,3,4,5,6},集合A={1,3,5},B={2,3,6},則(∁IA)∩B={2,6}.

查看答案和解析>>

同步練習冊答案