已知α、β是兩個不同的平面,a、b、c是三條不同的直線,則下列命題正確的(  )
A、若a?α,b∥a,則b∥α
B、若a?α,b?α,c?β,a∥c,b∥c,則α∥β
C、若a?α,b?α,c?β,c⊥a,c⊥b,則α⊥β
D、若a?α,b?α,a∩b≠ϕ,c⊥a,c⊥b,c∥β,則α⊥β
考點:平面與平面之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:對于A,根據(jù)線面平行的判定,可得結(jié)論,
對于B,根據(jù)面面平行的判定,可得結(jié)論,
對于C,根據(jù)面面垂直的判定,可得結(jié)論,
對于D,根據(jù)線面垂直的判定和面面垂直的判定,可得結(jié)論,
解答: 解:對于A,根據(jù)線面平行的判定,b?α,a∥b,a?α,則a∥α,故A不正確;
對于B,根據(jù)面面平行的判定,若a?α,b?α,c?β,a∥c,b∥c,α∥β,或相交,故B不正確;
對于C,根據(jù)面面垂直的性質(zhì),當(dāng)若a?α,b?α,c?β,c⊥a,c⊥b,當(dāng)a,b相交時,則a⊥β,故C不正確;
對于D,若a?α,b?α,a∩b≠ϕ,c⊥a,則c⊥α,又c∥β,則α⊥β,故D正確,
故選D.
點評:本題考查空間線面位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(1-x),則f″(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在R上的奇函數(shù),x>0時,f(x)=x2+(2-a)x,a≥0,若對任意x∈R,都有f(x-
2
a)≤f(x),則a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|x+1|+|x-1|≥|m-1|+|m-2|的解集是R,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中錯誤的是( 。
A、經(jīng)過兩條平行直線,有且只有一個平面
B、兩兩相交且不共點的三條直線確定一個平面
C、平面α與平面β相交,它們只有有限個公共點
D、如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過點A(0,a)(a為常數(shù)且a>0),且與圓E:x2+y2-8x+4y=0切于原點.
(1)求圓C的方程;
(2)若過點B(-1,0)總存在直線l,使得以l被圓C截得的弦為直徑的圓F經(jīng)過點D(-1,1),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=ax2在點(1,a)處的切線與直線x+2y-6=0垂直,則a=(  )
A、1
B、-
1
4
C、-
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校舉行“普法”知識競賽,高二年級共有800名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績進(jìn)行統(tǒng)計.請你解答下列問題:
(1)若用系統(tǒng)抽樣的方法抽取50個樣本,現(xiàn)將所有學(xué)生隨機地編號為000,001,002,…,799,若抽樣時確定每組都是抽出第5個數(shù),求出第三組抽出的學(xué)生的編號;
(2)根據(jù)(1)中抽取的樣本統(tǒng)計得到的頻率分布直方圖填充頻率分布表;
(3)若成績在95分以上的學(xué)生設(shè)為一等獎,問所有參賽學(xué)生中獲得一等獎的學(xué)生約為多少人?
(4)估算出本次競賽的均分.
分組頻數(shù)頻率
[60,70]  
[70,80]  
[80,90]  
[90.100]  
合計501

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+mx-2在區(qū)間(-∞,1)上是單調(diào)減函數(shù),則m范圍
 

查看答案和解析>>

同步練習(xí)冊答案