【題目】如圖,在四棱錐E﹣ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DF的中點. (I)求證:BE∥平面ACF;
(II)求平面BCF與平面BEF所成銳二面角的余弦角.
【答案】解:(1)連接BD和AC交于點O,連接OF,因為四邊形ABCD為正方形,所以O為BD的中點.
因為F為DE的中點,所以OF∥BE.
因為BE平面ACF,OF平面AFC,
所以BE∥平面ACF.
(II)因為AE⊥平面CDE,CD平面CDE,
所以AE⊥CD.
因為ABCD為正方形,所以CD⊥AD.
因為AE∩AD=A,AD,AE平面DAE,
所以CD⊥平面DAE.
因為DE平面DAE,所以DE⊥CD.
所以以D為原點,以DE所在直線為x軸建立如圖所示的空間直角坐標系,
則E(2,0,0),F(xiàn)(1,0,0),A(2,0,2),D(0,0,0).
因為AE⊥平面CDE,DE平面CDE,
所以AE⊥CD.
因為AE=DE=2,所以 .
因為四邊形ABCD為正方形,
所以 ,
所以 .
由四邊形ABCD為正方形,
得 = =(2,2 ,2),
所以 .
設平面BEF的一個法向量為 =(x1,y1,z1),又知 =(0,﹣2 ,﹣2), =(1,0,0),
由 ,可得 ,
令y1=1,得 ,
所以 .
設平面BCF的一個法向量為 =(x2,y2,z2),又知 =(﹣2,0,﹣2), =(1,﹣2 ,0),
由 ,即: .
令y2=1,得 ,
所以 .
設平面BCF與平面BEF所成的銳二面角為θ,
又cos = = = .
則 .
所以平面BCF與平面BEF所成的銳二面角的余弦值為 .
【解析】(1)連接BD和AC交于點O,連接OF,證明OF∥BE.然后證明BE∥平面ACF.(II)以D為原點,以DE所在直線為x軸建立如圖所示的空間直角坐標系,求出相關點的坐標,求出平面BEF的一個法向量,平面BCF的一個法向量,設平面BCF與平面BEF所成的銳二面角為θ,利用數(shù)量積求解即可.
【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以點(0,1)為圓心且與直線mx﹣y﹣2m﹣1=0(x∈R)相切的所有圓中,半徑最大的圓的標準方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為4π,且對x∈R,有f(x)≤f( )成立,則關于函數(shù)f(x)的下列說法中正確的是( )
①φ=
②函數(shù)f(x)在區(qū)間[﹣π,π]上遞減;
③把g(x)=sin 的圖象向左平移 得到f(x)的圖象;
④函數(shù)f(x+ )是偶函數(shù).
A.①③
B.①②
C.②③④
D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究學生的數(shù)學核素養(yǎng)與抽象(能力指標x)、推理(能力指標y)、建模(能力指標z)的相關性,并將它們各自量化為1、2、3三個等級,再用綜合指標w=x+y+z的值評定學生的數(shù)學核心素養(yǎng);若w≥7,則數(shù)學核心素養(yǎng)為一級;若5≤w≤6,則數(shù)學核心素養(yǎng)為二級;若3≤w≤4,則數(shù)學核心素養(yǎng)為三級,為了了解某校學生的數(shù)學核素養(yǎng),調(diào)查人員隨機訪問了某校10名學生,得到如下結(jié)果:
學生編號 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (2,2,3) | (3,2,3) | (3,3,3) | (1,2,2) | (2,3,2) | (2,3,3) | (2,2,2) | (2,3,3) | (2,1,1) | (2,2,2) |
(1)在這10名學生中任取兩人,求這兩人的建模能力指標相同的概率;
(2)從數(shù)學核心素養(yǎng)等級是一級的學生中任取一人,其綜合指標為a,從數(shù)學核心素養(yǎng)等級不是一級的學生中任取一人,其綜合指標為b,記隨機變量X=a﹣b,求隨機變量X的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC=2,BCcos(π﹣A)=1,則cosA的值所在區(qū)間為( )
A.(﹣0.4,﹣0.3)
B.(﹣0.2,﹣0.1)
C.(﹣0.3,﹣0.2)
D.(0.4,0.5)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=|x﹣a|,a∈R
(Ⅰ)當a=5,解不等式f(x)≤3;
(Ⅱ)當a=1時,若x∈R,使得不等式f(x﹣1)+f(2x)≤1﹣2m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓C: =1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2 , 過點A且斜率為 的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1 .
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過點P且斜率大于 的直線與橢圓交于M,N兩點(|PM|>|PN|),若S△PAM:S△PBN=λ,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 的兩個焦點為 的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過正方體ABCD﹣A1B1C1D1的頂點A1在空間作直線l,使l與直線AC和BC1所成的角都等于 ,則這樣的直線l共可以作出( )
A.1條
B.2條
C.3條
D.4條
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com