9.將函數(shù)f(x)=cos2x的圖象向左平移φ(φ>0)個(gè)單位后,若所得的圖象經(jīng)過點(diǎn)$({\frac{π}{3},0})$,則φ的最小值為$\frac{5π}{12}$.

分析 根據(jù)函數(shù)的平移法則,求出f(x)圖象向左平移后的解析式,再根據(jù)函數(shù)圖象過點(diǎn)($\frac{π}{3}$,0)求出φ的解析式,由φ>0可得φ的最小值.

解答 解:函數(shù)f(x)=cos2x的圖象向左平移φ(φ>0)個(gè)單位后,
可得函數(shù)y=cos[2(x+φ)]=cos(2x+2φ)的圖象,
再根據(jù)所得的圖象過點(diǎn)($\frac{π}{3}$,0),
可得 2×$\frac{π}{3}$+2φ=kπ+$\frac{π}{2}$,k∈z,
故φ=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈z,
φ>0,可得φ的最小值為$\frac{5π}{12}$.
故答案為:$\frac{5π}{12}$.

點(diǎn)評(píng) 本題主要考查了余弦函數(shù)的圖象性質(zhì)與平移法則的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若sinA+sinB=sinC(cosA+cosB),此三角形的形狀是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex(x2+x+a)在(0,f(0))處的切線與直線2x-y-3=0平行,其中a∈R.
(1)求a的值;
(2)求函數(shù)f(x)在區(qū)間[-2,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)(0,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點(diǎn),若以AB為直徑的圓過橢圓C的右頂點(diǎn).求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若復(fù)數(shù)z1=1+i,z2=2-i(i為虛數(shù)單位),則z1z2的模為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)若$β∈[{0,\frac{π}{2}}]$,求f(β)的取值范圍;
(2)若$tanα=2\sqrt{3}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對(duì)任意實(shí)數(shù)t,不等式|t-3|+|2t+1|≥|2x-1|+|x+2|恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$的左、右焦點(diǎn),點(diǎn)P(x0,y0)在橢圓C上.
(Ⅰ)求$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$的最小值;
(Ⅱ)若y0>0且$\overrightarrow{{PF}_{1}}$•$\overrightarrow{F{{\;}_{1}F}_{2}}$=0,已知直線l:y=k(x+1)與橢圓C交于兩點(diǎn)A,B,過點(diǎn)P且平行于直線l的直線交橢圓C于另一點(diǎn)Q,問:四邊形PABQ能否成為平行四邊形?若能,請(qǐng)求出直線l的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)直線m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列事件中是必然事件的是( 。
A.若m∥α,n∥β,m⊥n,則α⊥βB.若m∥α,n⊥β,m∥n,則α∥β
C.若m⊥α,n∥β,m⊥n,則α∥βD.若m⊥α,n⊥β,m∥n,則α∥β

查看答案和解析>>

同步練習(xí)冊(cè)答案