12.已知函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調遞減區(qū)間.

分析 (1))先根據(jù)  f(x)=$\overrightarrow a$•$\overrightarrow b$求得函數(shù)f(x)的解析式,利用兩角和公式化簡整理后,利用三角函數(shù)的性質求函數(shù)f(x)的最小正周期、最大值和最小值.
(2)根據(jù)整理出來的函數(shù)的表達式,利用正弦函數(shù)的單調性可求得函數(shù)的單調遞區(qū)間.

解答 解:(1)∵f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
∴f(x)=cos2x+1+$\sqrt{3}$sin2x-1=2($\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x)=2sin(2x+$\frac{π}{6}$),
即$f(x)=2sin(2x+\frac{π}{6})$.
∴T=π;f(x)max=2,f(x)min=-2
(2)由(1)知,$f(x)=2sin(2x+\frac{π}{6})$.
則2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,
所以kπ+$\frac{π}{3}$≤x≤kπ+$\frac{2π}{3}$,
故函數(shù)f(x)的單調遞減區(qū)間為:$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}]$,k∈Z.

點評 本題考查三角函數(shù)的性質,是一個以向量為載體的題目,這種題目經(jīng)常出現(xiàn)在高考卷中,是一個典型的三角函數(shù)解答題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.有如下幾種說法:
①若p∨q為真命題,則p、q均為真命題;
②命題“?x0∈R,2x0≤0”的否定是?x∈R,2x>0;
③直線l:y=kx+l與圓O:x2+y2=1相交于A、B兩點,則“k=l”是△OAB的面積為$\frac{1}{2}$的充分而不必要條件;
④隨機變量ξ-N(0,1),已知φ(-1.96)=0.025,則 P(|ξ|<1.96 )=0.975.
其中正確的為( 。
A.①④B.②③C.②③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在區(qū)間[0,1]上給定曲線y=x2.試在此區(qū)間內(nèi)確定點t的值,使圖中的陰影部分的面積S1與S2之和最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.過點P(-1,2),傾斜角為135°的直線方程為( 。
A.x+y-1=0B.x-y+1=0C.x-y-1=0D.x+y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知不等式$\frac{1}{x-1}$<1的解集為p,不等式x2+(a-1)x-a>0的解集為q,若q是p的必要不充分條件,則實數(shù)a的取值范圍是( 。
A.[-2,-1]B.(-2,-1]C.[-3,1]D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+t,x<0}\\{x+lnx,x>0}\end{array}\right.$,其中t是實數(shù).設A,B為該函數(shù)圖象上的兩點,橫坐標分別為x1,x2,且x1<x2
(Ⅰ)求f(x)的單調區(qū)間和極值;
(Ⅱ)若x2<0,函數(shù)f(x)的圖象在點A,B處的切線互相垂直,求x1-x2的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù)z=-2i+$\frac{3-i}{i}$,則復數(shù)z的共軛復數(shù)$\overline z$在復平面內(nèi)對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.要完成下述兩項調查,應采用的抽樣方法是( 。
①某社區(qū)有500個家庭,其中高收入家庭125戶,中等收入家庭280戶,低收入家庭95戶,為調查社會購買力的某項指標,要從中抽取1個容量為100戶的樣本;
②某學校高一年級有12名女排運動員,要從中選出3個調查學習負擔情況.
A.①用簡單隨機抽樣法,②用系統(tǒng)抽樣法
B.①用分層抽樣法,②用簡單隨機抽樣法
C.①用系統(tǒng)抽樣法,②用分層抽樣法
D.①用分層抽樣法,②用系統(tǒng)抽樣法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.集合A={1,2,3},B={-1,2}.設映射f:A→B,如果集合B中的元素都是A中元素在f下的象,那么這樣的映射有6個.

查看答案和解析>>

同步練習冊答案