【題目】某醬油廠對新品種醬油進行了定價,在各超市得到售價與銷售量的數據如下表:
單價(元) | 5 | 5.2 | 5.4 | 5.6 | 5.8 | 6 |
銷量(瓶) | 9.0 | 8.4 | 8.3 | 8.0 | 7.5 | 6.8 |
(1)求售價與銷售量的回歸直線方程;( ,)
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/瓶,為使工廠獲得最大利潤(利潤=銷售收入成本),該產品的單價應定為多少元?
相關公式:,.
科目:高中數學 來源: 題型:
【題目】
如圖,四棱錐P -ABCD的底面是矩形,側面PAD是正三角形,
且側面PAD⊥底面ABCD,E 為側棱PD的中點。
(1)求證:PB//平面EAC;
(2)求證:AE⊥平面PCD;
(3)當為何值時,PB⊥AC ?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】旅游業(yè)作為一個第三產業(yè),時間性和季節(jié)性非常強,每年11月份來臨,全國各地就相繼進入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺做宣傳推廣,銷售特惠旅游產品.該公司統(tǒng)計了活動剛推出一周內產品的銷售數量,用表示活動推出的天數,用表示產品的銷售數量(單位:百件),統(tǒng)計數據如下表所示.
根據以上數據,繪制了如圖所示的散點圖,根據已有的函數知識,發(fā)現(xiàn)樣本點分布在某一條指數型函數的周圍.為求出該回歸方程,相關人員確定的研究方案是:先用其中5個數據建立關于的回歸方程,再用剩下的2組數據進行檢驗.試回答下列問題:
(1)現(xiàn)令,若選取的是這5組數據,已知,,請求出關于的線性回歸方程(結果保留一位有效數字);
(2)若由回歸方程得到的估計數據與選出的檢驗數據的誤差均不超過,則認為得到的回歸方程是可靠的,試問(1)中所得的回歸方程是否可靠?
參考公式及數據:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為, ;;.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有100名工人接受了生產1000臺某產品的總任務,每臺產品由9個甲型裝置和3個乙型裝置配套組成,每個工人每小時能加工完成1個甲型裝置或3個乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設加工甲型裝置的工人有x人,他們加工完甲型裝置所需時間為小時,其余工人加工完乙型裝置所需時間為小時,則生產1000臺某產品的總加工時間y是一個關于x的函數。
(1)求y關于x的函數解析式;
(2)如何分配工人才能使生產1000臺某產品的總加工時間最少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】山西省在2019年3月份的高三適應性考試中對數學成績數據統(tǒng)計顯示,全市10000名學生的成績近似服從正態(tài)分布,現(xiàn)某校隨機抽取了50名學生的數學成績分析,結果這50名學生的成績全部介于85分到145分之間,現(xiàn)將結果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖:
(1)求全市數學成績在135分以上的人數;
(2)試由樣本頻率分布直方圖佔計該校數學成績的平均分數;
(3)若從這50名學生中成績在125分(含125分)以上的同學中任意抽取3人,該3人在全市前13名的人數記為,求的分布列和期望.
附:若,則,,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內部)以AB邊所在直線為旋轉軸旋轉120°得到的,G是的中點.
(1)設P是上的一點,且AP⊥BE,求∠CBP的大。
(2)當AB=3,AD=2時,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點與橢圓:的一個頂點重合,且這個頂點與橢圓的兩個焦點構成的三角形面積為.
(1)求橢圓的方程;
(2)若橢圓的上頂點為,過作斜率為的直線交橢圓于另一點,線段的中點為,為坐標原點,連接并延長交橢圓于點,的面積為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1).在中,,,,、分別是、上的點,且,將沿折起到的位置,使,如圖(2).
(1)求證:平面;
(2)當點在何處時,三棱錐體積最大,并求出最大值;
(3)當三棱錐體積最大時,求與平面所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com