已知函數(shù),(且).
(1)設(shè),令,試判斷函數(shù)在上的單調(diào)性并證明你的結(jié)論;
(2)若且的定義域和值域都是,求的最大值;
(3)若不等式對恒成立,求實(shí)數(shù)的取值范圍;
(1)詳見解析;(2);(3).
【解析】
試題分析:(1)本小題有兩個(gè)思考方向,其一可用單調(diào)性的定義給與證明,通過取值、作差、變形、判號(hào)、結(jié)論可完成證明;其二可用導(dǎo)數(shù)給與證明,通過求導(dǎo)數(shù),判斷導(dǎo)數(shù)的正負(fù)可完成證明;(2)本小題首先判斷函數(shù)在上單調(diào)遞增,這樣根據(jù)函數(shù)的定義域和值域都是可得,于是把問題轉(zhuǎn)化為一元二次方程求解,通過根與系數(shù)的關(guān)系可得的表達(dá)式,然后求最值;(3)本小題通過不等式變現(xiàn)可得,即得到不等式對恒成立,然后轉(zhuǎn)化為函數(shù)的最值得不等式組,求得參數(shù)的取值范圍.
試題解析:(1)證明:
方法一:任取,
當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),,在上單調(diào)遞減 5分
方法二:,則
當(dāng)時(shí),,在上單調(diào)遞增;
當(dāng)時(shí),,在上單調(diào)遞減 5分
(2)由(1)知函數(shù)在上單調(diào)遞增;因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014040204344543589277/SYS201404020436271233804509_DA.files/image016.png">所以在上單調(diào)遞增,
的定義域、值域都是,則,
即是方程的兩個(gè)不等的正根,
等價(jià)于方程有兩個(gè)不等的正根,
等價(jià)于且 ,則,
時(shí),最大值是 10分
(3),則不等式對恒成立,
即
即不等式,對恒成立,
令,易證在遞增,
同理遞減.
. 15分
考點(diǎn):1.導(dǎo)數(shù)判斷單調(diào)性;2.函數(shù)的最值;3.根與系數(shù)關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)滿足,且
(1)當(dāng)時(shí),求的表達(dá)式;
(2)設(shè),,求證:;w.w.w.k.s.5.u.c.o.m
(3)設(shè),對每一個(gè),在與之間插入個(gè),得到新數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試問是否存在正整數(shù),使?若存在求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),若且,則下列不等式中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆度黑龍江哈三中高三上學(xué)期期中理科數(shù)學(xué)試卷 題型:填空題
已知函數(shù)滿足,且的導(dǎo)函數(shù),則的解集為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省廊坊市高二下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
已知函數(shù),,且.
(1)試求所滿足的關(guān)系式;
(2)若,方程有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿分14分)
已知函數(shù), ,且.
(Ⅰ)若,求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com