【題目】在正四棱錐中,底面正方形的邊長為1,側(cè)棱長為2,則異面直線與所成角的大小為__________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品每千克定價10元,商家采取了如下的促銷方式:
一次購買量 | 促銷方式 |
不多于20千克 | 原價出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原價出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原價出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次購買(單位:千克),此商品的花費(單位:元)的函數(shù)解析式;
(2)某人一次購買此商品400元,問他能購得此商品多少千克?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個面都是三角形的幾何體是三棱錐
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長與底面多邊形的邊長都相等,則該棱錐可能是六棱錐
D.圓錐的頂點與底面圓周上的任意一點的連線都是母線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲和乙玩一個猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫有1﹣六個數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機抽取一張,然后根據(jù)自己手中的數(shù)推測誰手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說:我不知道誰手中的數(shù)更大;乙聽了甲的判斷后,思索了一下說:我知道誰手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
在如圖所示的多面體中,四邊形和都為矩形。
(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè), 分別是線段, 的中點,在線段上是否存在一點,使直線平面?請證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足對于任意實數(shù),都有,且當(dāng)時,,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時,的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】氣象部門提供了某地區(qū)今年六月分(30天)的日最高氣溫的統(tǒng)計表如下:
日最高氣溫t(單位:) | ||||
天數(shù) | 6 | 12 |
由于工作疏忽,統(tǒng)計表被墨水污染,和數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于的頻率為0.9.
(1)若把頻率看作概率,求,的值;
(2)把日最高氣溫高干稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測是否有95%的把握認為本地區(qū)“高溫天氣”與西瓜“旺銷”有關(guān)?說明理由.
高溫天氣 | 非高溫天氣 | 合計 | |
旺銷 | 1 | ||
不旺銷 | 6 | ||
合計 |
附
P(K2≥R) | 0.10 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點坐標(biāo)分別是A(7,﹣3),B(2,﹣8),C(5,1),
(1)求AB垂直平分線的方程(化為一般式);
(2)求△ABC外接圓的方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com