【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線(xiàn)l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線(xiàn)C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線(xiàn)l的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;
(2)設(shè)直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),當(dāng)φ變化時(shí),求|AB|的最小值.
【答案】
(1)解:直線(xiàn)l的參數(shù)方程為 消去參數(shù)可得:xcosφ﹣ysinφ+2sinφ=0;
即直線(xiàn)l的普通方程為xcosφ﹣ysinφ+2sinφ=0;
曲線(xiàn)C的極坐標(biāo)方程為ρcos2θ=8sinθ.可得:ρ2cos2θ=8ρsinθ.
那么:x2=8y.
∴曲線(xiàn)C的直角坐標(biāo)方程為x2=8y
(2)解:直線(xiàn)l的參數(shù)方程帶入C的直角坐標(biāo)方程,可得:t2cos2φ﹣8tsinφ﹣16=0;
設(shè)A,B兩點(diǎn)對(duì)應(yīng)的參數(shù)為t1,t2,
則 , .
∴|AB|=|t1﹣t2|= = .
當(dāng)φ= 時(shí),|AB|取得最小值為8
【解析】(1)直接消去直線(xiàn)l的參數(shù)可得普通方程;根據(jù)ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進(jìn)行代換即得曲線(xiàn)C的直角坐標(biāo)方程.(2)將直線(xiàn)l的參數(shù)方程帶入C的直角坐標(biāo)方程;設(shè)出A,B兩點(diǎn)的參數(shù),利用韋達(dá)定理建立關(guān)系求解最值即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的方程為x+y+3=0,以直角坐標(biāo)系中x軸的正半軸為極軸的極坐標(biāo)系中,圓M的極坐標(biāo)方程為ρ=2sinθ. (Ⅰ)寫(xiě)出圓M的直角坐標(biāo)方程及過(guò)點(diǎn)P(2,0)且平行于l的直線(xiàn)l1的參數(shù)方程;
(Ⅱ)設(shè)l1與圓M的兩個(gè)交點(diǎn)為A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌的汽車(chē)4S店,對(duì)最近100例分期付款購(gòu)車(chē)情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表所示,已知分9期付款的頻率為0.4;該店經(jīng)銷(xiāo)一輛該品牌的汽車(chē).若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 | a | b |
(1)若以表中計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車(chē)的顧客(數(shù)量較大)中隨機(jī)抽取3位顧客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分層抽樣的方式從這100位顧客中抽出5人,再?gòu)某槌龅?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量η,求η的分布列及數(shù)學(xué)期望E(η).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線(xiàn)C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ﹣4sinθ.
(1)化曲線(xiàn)C1 , C2的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);
(2)設(shè)曲線(xiàn)C2與x軸的一個(gè)交點(diǎn)的坐標(biāo)為P(m,0)(m>0),經(jīng)過(guò)點(diǎn)P作斜率為1的直線(xiàn),l交曲線(xiàn)C2于A,B兩點(diǎn),求線(xiàn)段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}和{bn}中,a1= ,{an}的前n項(xiàng)為Sn , 滿(mǎn)足Sn+1+( )n+1=Sn+( )n(n∈N*),bn=(2n+1)an , {bn}的前n項(xiàng)和為T(mén)n .
(1)求數(shù)列{bn}的通項(xiàng)公式bn以及Tn .
(2)若T1+T3 , mT2 , 3(T2+T3)成等差數(shù)列,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了制定合理的節(jié)電方案,供電局對(duì)居民用電進(jìn)行了調(diào)查,通過(guò)抽樣,獲得了某年200戶(hù)居民每戶(hù)的月均用電量(單位:度),將數(shù)據(jù)按照[0,100),[100,200),[200,300),[300,400),[400,500),[500,600),[600,700),[700,800),[800,900]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中m的值并估計(jì)居民月均用電量的中位數(shù);
(Ⅱ)從樣本里月均用電量不低于700度的用戶(hù)中隨機(jī)抽取4戶(hù),用X表示月均用電量不低于800度的用戶(hù)數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說(shuō)法錯(cuò)誤的是( )
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對(duì)稱(chēng)軸為直線(xiàn)x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)P(1, ),離心率為 .
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F1、F2分別為橢圓C的左、右焦點(diǎn),過(guò)F2的直線(xiàn)l與橢圓C交于不同兩點(diǎn)M,N,記△F1MN的內(nèi)切圓的面積為S,求當(dāng)S取最大值時(shí)直線(xiàn)l的方程,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣ )2+(y﹣1)2=1和兩點(diǎn)A(﹣t,0),B(t,0)(t>0),若圓C上存在點(diǎn)P,使得∠APB=90°,則當(dāng)t取得最大值時(shí),點(diǎn)P的坐標(biāo)是( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com