10.甲、乙二人用4張撲克牌(分別是紅桃2、紅桃3、紅桃4、方片4)玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(Ⅰ)若甲抽到紅桃3,則乙抽到的牌面數(shù)字比3大的概率是多少?
(Ⅱ)甲、乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝.你認為此游戲是否公平,說明你的理由.

分析 (Ⅰ)甲抽到3,乙抽到的只能是2,4,4,所求概率即可求出;
(Ⅱ)列舉可得甲勝的概率為P1=$\frac{5}{12}$,乙勝的概率為P2=$\frac{5}{12}$.比較即可.

解答 解:(Ⅰ)甲抽到紅桃3,乙抽到的牌的牌面數(shù)字只能是2,4,4,
因此乙抽到的牌的牌面數(shù)字比3大的概率為$\frac{2}{3}$.
(Ⅱ)甲抽到的牌的牌面數(shù)字比乙大的情況有5種,
故甲勝的概率P1=$\frac{5}{12}$,同理乙勝的概率P2=$\frac{5}{12}$.因為P1=P2,所以此游戲公平.

點評 本題考查概率的求法,是基礎題,解題時要注意古典概型概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設點$F({0,\frac{1}{4}})$,動圓A經過點F且和直線$y=-\frac{1}{4}$相切,記動圓的圓心A的軌跡為曲線C.
(1)求曲線C的方程;
(2)設曲線C上一點P的橫坐標為t(t>0),過P的直線交C于一點Q,交x軸于點M,過點Q作PQ的垂線交C于另一點N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖所示,在△ABC中,BD=2CD,若$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AC}=\overrightarrow b$,則$\overrightarrow{AD}$=( 。
A.$\frac{2}{3}\overrightarrow a+\frac{1}{3}\overrightarrow b$B.$\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\frac{1}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$D.$\frac{2}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設隨機變量的分布列如表所示,且E(ξ)=1.6,則ab=( 。
ξ0123
P0.1ab0.1
A.0.2B.0.1C.0.15D.0.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知△ABC中,內角A,B,C的對邊分別為a,b,c,若a2=b2+c2-bc,a=4,則△ABC的外接圓半徑為(  )
A.$\frac{{4\sqrt{3}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設i是虛數(shù)單位,則$\frac{{{{({1+i})}^3}}}{{{{({1-i})}^2}}}$=-1-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知平面直角坐標系中點A(1,-1),B(4,0),C(2,2),平面區(qū)域D由所有滿足$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$($1<λ≤\frac{3}{2}$,1<μ≤b)的點P(x,y)組成的區(qū)域,若區(qū)域D的面積為8,則b的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知tanx=2,則$\frac{6sin2x+2cos2x}{cos2x-3sin2x}$的值為-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+$\sqrt{2}$(m-1)x+$\frac{m}{4}$,現(xiàn)有一組數(shù)據(jù)(該組數(shù)據(jù)數(shù)量龐大),從中隨機抽取10個,繪制所得的莖葉圖如圖所示,且莖葉圖中的數(shù)據(jù)的平均數(shù)為2.
(1)現(xiàn)從莖葉圖中的數(shù)據(jù)中任取4個數(shù)據(jù)分別替換m的值,求至少有2個數(shù)據(jù)使得函數(shù)f(x)沒有零點的概率;
(2)以頻率估計概率,若從該組數(shù)據(jù)中隨機抽取4個數(shù)據(jù)分別替換m的值,記使得函數(shù)f(x)沒有零點的個數(shù)為?,求?的分布列以及數(shù)學期望、方差.

查看答案和解析>>

同步練習冊答案