【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時的草場植被指數(shù);以上判斷中正確的個數(shù)是( )
A.0B.1C.2D.3
【答案】B
【解析】
根據(jù)兩組數(shù)據(jù)的相關(guān)性,對題中三個命題分別判斷即可.
對于①,羊只數(shù)量與草場植被指數(shù)成負(fù)相關(guān)關(guān)系,不是減函數(shù)關(guān)系,∴①錯誤;
對于②,用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,∵第一組數(shù)據(jù)是離群值,去掉后得到的相關(guān)系數(shù)為,其相關(guān)性更強(qiáng),∴,②正確;
對于③,利用回歸直線方程,不能準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時的草場植被指數(shù),只是預(yù)測值,∴③錯誤;
綜上可知正確命題個數(shù)是1.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),的圖象都相切的直線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開為了了解哪些人更關(guān)注“兩會”,某機(jī)構(gòu)隨機(jī)抽取了年齡在15~75歲之間的200人進(jìn)行調(diào)查,并按年齡繪制的頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”經(jīng)統(tǒng)計(jì)“青少年人”和“中老年人”的人數(shù)之比為.其中“青少年人”中有40人關(guān)注“兩會”,“中老年人”中關(guān)注“兩會”和不關(guān)注“兩會”的人數(shù)之比是.
(1)求圖中的值;現(xiàn)釆用分層抽樣在和中隨機(jī)抽取8名代表,從8人中仼選2人,求2人中至少有1個是“中老年人”的概率是多少?
(2)根據(jù)已知條件,完成下面的列聯(lián)表,并根據(jù)此統(tǒng)計(jì)結(jié)果判斷:能否有的把握認(rèn)為“中老年人”比“青少年人”更加關(guān)注“兩會”?
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年人 | |||
中老年人 | |||
合計(jì) |
參考數(shù)據(jù)及公式:
0.150 | 0.100 | 0.050 | 0.010 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右兩個焦點(diǎn)分別為,離心率,短軸長為2.
(1)求橢圓的方程;
(2)點(diǎn)為橢圓上的一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn), 的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甘肅省是土地荒漠化較為嚴(yán)重的省份,一代代治沙人為了固沙、治沙,改善生態(tài)環(huán)境,不斷地進(jìn)行研究與實(shí)踐,實(shí)現(xiàn)了沙退人進(jìn).2019年,古浪縣八步沙林場“六老漢”三代人治沙群體作為優(yōu)秀代表,被中宣部授予“時代楷!狈Q號.在治沙過程中為檢測某種固沙方法的效果,治沙人在某一實(shí)驗(yàn)沙丘的坡頂和坡腰各布設(shè)了50個風(fēng)蝕插釬,以測量風(fēng)蝕值(風(fēng)蝕值是測量固沙效果的指標(biāo)之一,數(shù)值越小表示該插釬處被風(fēng)吹走的沙層厚度越小,說明固沙效果越好,數(shù)值為0表示該插針處沒有被風(fēng)蝕)通過一段時間的觀測,治沙人記錄了坡頂和坡腰全部插釬測得的風(fēng)蝕值(所測數(shù)據(jù)均不為整數(shù)),并繪制了相應(yīng)的頻率分布直方圖.
(Ⅰ)根據(jù)直方圖估計(jì)“坡腰處一個插釬風(fēng)蝕值小于30”的概率;
(Ⅱ)若一個插釬的風(fēng)蝕值小于30,則該數(shù)據(jù)要標(biāo)記“*”,否則不標(biāo)記.根據(jù)以上直方圖,完成列聯(lián)表:
標(biāo)記 | 不標(biāo)記 | 合計(jì) | |
坡腰 | |||
坡頂 | |||
合計(jì) |
并判斷是否有的把握認(rèn)為數(shù)據(jù)標(biāo)記“*”與沙丘上插釬所布設(shè)的位置有關(guān)?
(Ⅲ)坡頂和坡腰的平均風(fēng)蝕值分別為和,若,則可認(rèn)為此固沙方法在坡頂和坡腰的固沙效果存在差異,試根據(jù)直方圖計(jì)算和(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),并判斷該固沙方法在坡頂和坡腰的固沙效果是否存在差異.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'、DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構(gòu)成.瑞士數(shù)學(xué)家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學(xué)方法設(shè)計(jì)自己的家園.英國數(shù)學(xué)家麥克勞林通過計(jì)算得到∠B′C′D′=109°28′16'.已知一個房中BB'=5,AB=2,tan54°44′08',則此蜂房的表面積是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了實(shí)施“科技下鄉(xiāng),精準(zhǔn)脫貧”戰(zhàn)略,某縣科技特派員帶著,,三個農(nóng)業(yè)扶貧項(xiàng)目進(jìn)駐某村,對該村僅有的甲、乙、丙、丁四個貧困戶進(jìn)行產(chǎn)業(yè)幫扶.經(jīng)過前期實(shí)際調(diào)研得知,這四個貧困戶選擇,,三個扶貧項(xiàng)目的意向如下表:
扶貧項(xiàng)目 | |||
貧困戶 | 甲、乙、丙、丁 | 甲、乙、丙 | 丙、丁 |
若每個貧困戶只能從自己已登記的選擇意向項(xiàng)目中隨機(jī)選取一項(xiàng),且每個項(xiàng)目至多有兩個貧困戶選擇,則不同的選法種數(shù)有( )
A.24種B.16種C.10種D.8種
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com