【題目】已知, 的導(dǎo)函數(shù).

(1)求的極值;

(2)證明:對(duì)任意實(shí)數(shù),都有恒成立;

(3)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)

【解析】試題分析:(Ⅰ)由題意得處,進(jìn)而,分兩種情況討論,即可求解;

(Ⅱ)由,則要證 ,只需證.

,利用導(dǎo)數(shù)得出函數(shù)的性質(zhì),即可作出證明.

(Ⅲ)由(Ⅱ)知恒成立,可得,分兩種情況討論,即可求解實(shí)數(shù)的值.

試題解析:

, ,

當(dāng)時(shí), 恒成立, 無(wú)極值;

當(dāng)時(shí), ,即

,得;由,得,

所以當(dāng)時(shí),有極小值.

(Ⅱ)因?yàn)?/span>,所以,要證 ,只需證.

,則,且,得; ,得

上單調(diào)遞減,在上單調(diào)遞增,

,即恒成立,

∴對(duì)任意實(shí)數(shù),都有 恒成立.

(Ⅲ)令,則,注意到

由(Ⅱ)知恒成立,故,

①當(dāng)時(shí), ,

于是當(dāng)時(shí), ,即成立.

②當(dāng)時(shí),由)可得).

,

故當(dāng)時(shí), ,

于是當(dāng)時(shí), 不成立.

綜上, 的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù).

(1)求解不等式的解集;

(2)若函數(shù)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二年級(jí)的一個(gè)研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個(gè)小組進(jìn)行驗(yàn)證性實(shí)驗(yàn).

1)第1組做了5次這種植物種子的發(fā)芽實(shí)驗(yàn)(每次均種下一粒種子),求他們的實(shí)驗(yàn)至少有3次成功的概率;

2)第二小組做了若干次發(fā)芽試驗(yàn)(每次均種下一粒種子),如果在一次實(shí)驗(yàn)中種子發(fā)芽成功就停止實(shí)驗(yàn),否則將繼續(xù)進(jìn)行下次實(shí)驗(yàn),直到種子發(fā)芽成功為止,但發(fā)芽實(shí)驗(yàn)的次數(shù)最多不超過(guò)5次,求第二小組所做種子發(fā)芽實(shí)驗(yàn)的次數(shù)的概率分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

(2)若函數(shù)處取得極值,對(duì)任意的恒成立,,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年12月,京津冀等地?cái)?shù)城市指數(shù)“爆表”,北方此輪污染為2015年以來(lái)最嚴(yán)重的污染過(guò)程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:

時(shí)間

星期一

星期二

星期三

星期四

星期五

星期六

星期七

車流量(萬(wàn)輛)

1

2

3

4

5

6

7

的濃度(微克/立方米)

28

30

35

41

49

56

62

(1)由散點(diǎn)圖知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

的濃度;

(ii)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬(wàn)輛以內(nèi)?(結(jié)果以萬(wàn)輛為單位,保留整數(shù))

參考公式:回歸直線的方程是,其中 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子內(nèi)裝有8張卡片,每張卡片上面寫著1個(gè)數(shù)字,這8個(gè)數(shù)字各不相同,且奇數(shù)有3個(gè),偶數(shù)有5個(gè).每張卡片被取出的概率相等.

(Ⅰ)如果從盒子中一次隨機(jī)取出2張卡片,并且將取出的2張卡片上的數(shù)字相加得到一個(gè)新數(shù),求所得新數(shù)是偶數(shù)的概率;

(Ⅱ)現(xiàn)從盒子中一次隨機(jī)取出1張卡片,每次取出的卡片都不放回盒子,若取出的卡片上寫著的數(shù)是偶數(shù)則停止取出卡片,否則繼續(xù)取出卡片.設(shè)取出了次才停止取出卡片,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究機(jī)構(gòu)追蹤40名小學(xué)畢業(yè)生隨年限與數(shù)學(xué)水平學(xué)習(xí)的情況.統(tǒng)計(jì)了年限與等級(jí)考試的平均成績(jī),如下列數(shù)據(jù):

學(xué)習(xí)年限

2

3

4

5

6

等級(jí)成績(jī)

2.2

3.8

5.5

6.5

7.0

(1)已知滿足線性關(guān)系,試求年限與等級(jí)考試成績(jī)的線性回歸直線方程.(其中,

(2)如果對(duì)40名學(xué)生“是否對(duì)數(shù)學(xué)學(xué)習(xí)感興趣”進(jìn)行調(diào)查,初中生和高中生對(duì)數(shù)學(xué)的喜歡程度如下聯(lián)表(其中學(xué)習(xí)年限2年或3年的為初中階段,年限為4年或5年或6年的為高中階段)

喜歡

不喜歡

合計(jì)

初中生

8

12

20

高中生

16

4

20

合計(jì)

24

16

40

根據(jù)上表計(jì)算,并說(shuō)明是否有的把握認(rèn)為“喜歡數(shù)學(xué)與學(xué)習(xí)年限有關(guān)”(其中 其中

0.025

0.010

0.005

5.024

6.635

7.897

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“公益行”是由某公益慈善基金發(fā)起并主辦的一款將用戶的運(yùn)動(dòng)數(shù)據(jù)轉(zhuǎn)化為公益步數(shù)的捐助公益項(xiàng)目的產(chǎn)品,捐助規(guī)則是滿10000步方可捐助且個(gè)人捐出10000步等價(jià)于捐出1元,現(xiàn)粗略統(tǒng)計(jì)該項(xiàng)目中其中200名的捐助情況表如下:

捐款金額(單位:元)

捐款人數(shù)

4

152

26

10

3

5

(1)將捐款額在200元以上的人稱為“健康大使”,請(qǐng)?jiān)诂F(xiàn)有的“健康大使”中隨機(jī)抽取2人,求捐款額在之間人數(shù)的分布列;

(2)為鼓勵(lì)更多的人來(lái)參加這項(xiàng)活動(dòng),該公司決定對(duì)捐款額在100元以上的用戶實(shí)行紅包獎(jiǎng)勵(lì),具體獎(jiǎng)勵(lì)規(guī)則如下:捐款額在的獎(jiǎng)勵(lì)紅包5元;捐款額在的獎(jiǎng)勵(lì)紅包8元;捐款額在的獎(jiǎng)勵(lì)紅包10元;捐款額大于250的獎(jiǎng)勵(lì)紅包15元.已知該活動(dòng)參與人數(shù)有40萬(wàn)人,將頻率視為概率,試估計(jì)該公司要準(zhǔn)備的紅包總金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上為增函數(shù),求正實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),求函數(shù)上的最值;

(3)當(dāng)時(shí),對(duì)大于1的任意正整數(shù),試比較的大小關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案