12.若logab、logac是方程x2-x-3=0的兩根,那么a、b、c之間的關(guān)系是a=bc.

分析 由logab、logac是方程x2-x-3=0的兩根,得logab+logac=1,即可得到a、b、c之間的關(guān)系.

解答 解:由logab、logac是方程x2-x-3=0的兩根,
得logab+logac=1,即loga(bc)=1,
∴a=bc.
∴a、b、c之間的關(guān)系是:a=bc.

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸進(jìn)線與直線x-y+3=0平行,則此雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={x|x(x-2)=0},B={x∈Z|4x2-9≤0},則A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=x ln x-ax2+(2a-1)x,a∈R.
(Ⅰ)令g(x)=$\frac{f(x)}{x}$,求 g(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)$\frac{1}{2}$<a≤1時(shí),證明:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)雙曲線的實(shí)軸長為2a(a>0),一個(gè)焦點(diǎn)為F,虛軸的一個(gè)端點(diǎn)為B,如果原點(diǎn)到直線FB的距離恰好為實(shí)半軸長,那么雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題p:拋物線x2=4y的焦點(diǎn)坐標(biāo)為(0,1),q:“a=3”是“直線ax+2y=0與直線2x-3y=3垂直”的充要條件,則以下結(jié)論正確的是( 。
A.p或q為真命題B.p且q為假命題C.p且¬q為真命題D.¬p或q為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)直線y=k(x-2)+4和曲線y=$\sqrt{4-{x}^{2}}$ 有公共點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是$[{\frac{3}{4},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=\frac{1}{1-x}+ln(1+x)$的定義域是( 。
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$a={({\frac{1}{3}})^x}$,b=x3,c=lnx,當(dāng)x>2時(shí),a,b,c的大小關(guān)系為(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

同步練習(xí)冊答案