下列結(jié)論正確的是(  )
A、30.8<30.7
B、0.75-0.1<0.750.1
C、ln3.4<ln8.5
D、lg0.3>lg0.5
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:A.考察函數(shù)y=3x在R上單調(diào)遞增,∴30.8>30.7,不正確.
B.考察函數(shù)y=0.75x在R上單調(diào)遞減,∴0.75-0.1>0.750.1,不正確.
C.考察函數(shù)y=lnx在(0,+∞)上單調(diào)遞增,∴l(xiāng)n3.4<ln8.5.
D.考察函數(shù)y=lgx在(0,+∞)上單調(diào)遞增,∴l(xiāng)g0.3<lg0.5.
故選:C.
點評:本題考查了對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)在定義域(-3,5)內(nèi)可導(dǎo),其圖象如圖所示,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式f′(x)≤0的解集為( 。
A、(-3,-1]∪[
3
2
,3]
B、[-
5
2
 , 1]∪[2 , 4]
C、[-1 , 
3
2
]∪[3 , 5)
D、(-3 , -
5
2
]∪[1 , 2]∪[4 , 5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)f(x)=(m2-m)x-1的圖象在R上遞減;q:曲線y=x2+(2m-3)x+1與x軸交于不同兩點,如果p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:cos215°-sin215°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某會議室第一排有8個座位,現(xiàn)安排甲、乙、丙3人就做,若要求3人左右兩邊均為空位,且丙在甲、乙之間,則不同的坐法為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin27°sin72°+cos27°cos72°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-2,3),
b
=(x,-6),且
a
b
,則實數(shù)x的值為( 。
A、4B、-4C、9D、-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論成立的是( 。
A、f(x)+g(x)是偶函數(shù)
B、f(x)•g(x)是偶函數(shù)
C、f(x)+g(x)是奇函數(shù)
D、f(x)•g(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
3+2x-x2
+lg(1-x)的定義域為M
(1)求M;
(2)當(dāng)x∈M時,求f(x)=4x-2x+2的最大值.

查看答案和解析>>

同步練習(xí)冊答案