如圖所示,已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB,M是PB的中點(diǎn)
(Ⅰ)求直線(xiàn)AC與直線(xiàn)PB所成的角的余弦值;
(Ⅱ)求直線(xiàn)AB與面ACM所成角的正弦值.
考點(diǎn):直線(xiàn)與平面所成的角,異面直線(xiàn)及其所成的角
專(zhuān)題:空間位置關(guān)系與距離,空間角
分析:由“PA⊥底面ABCD,且∠DAB=90°”可知,此題建立空間直角坐標(biāo)系相當(dāng)方便.以A為坐標(biāo)原點(diǎn),AD長(zhǎng)為單位長(zhǎng)度,分別以AD、AB、AP為x、y、z軸,建立空間直角坐標(biāo)系,求出各點(diǎn)坐標(biāo)計(jì)算各題.
(1)利用向量的數(shù)量積可知:cos<
AC
,
PB
>=
2
2
5
=
10
5
.可求出AC與PB所成的角余弦值.
(2)求出
AM
=(0,1,
1
2
),
AC
=(1,1,0),
AB
=(0,2,0),面ACM的法向量為
n
,運(yùn)用|cos<
n
,
AB
>|=直線(xiàn)AB與面ACM所成角的正弦值求解即可.
解答: 解:以A為坐標(biāo)原點(diǎn)AD長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,
1
2
).
(1)因
AC
=(1,1,0),
PB
=(0,2,-1)
|
AC
|=
2
,|
PB
=
5
,|
所以cos<
AC
PB
>=
2
2
5
=
10
5

所以,AC與PB所成的角余弦值為
10
5

(2)∵M(jìn)(0,1,
1
2
),
AM
=(0,1,
1
2
),
AC
=(1,1,0),
AB
=(0,2,0),
∴面ACM的法向量為
n
=(x,y,z),
n
AM
=0
n
AC
=0
,
x+y=0
y+
z
2
=0
n
=(1,-1,2),
∴cos<
n
,
AB
>=
-2
6
=-
6
6
,
∴直線(xiàn)AB與面ACM所成角的正弦值
6
6
點(diǎn)評(píng):本小題考查空間中的異面直線(xiàn)所成的角、二面角、解三角形等基礎(chǔ)知識(shí)考查空間想象能力和思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn表示數(shù)列{an}的前n項(xiàng)的和,且2Sn=a
 
2
n
+an
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=an•2 an,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn,a1=t,a2=-1,點(diǎn)Pn(an,Sn),若點(diǎn)Pn(n=2,3,4,…)都在斜率為
1
3
的同一條直線(xiàn)上.
(1)當(dāng)t為何值時(shí),數(shù)列{an}是等比數(shù)列?
(2)在滿(mǎn)足(1)的條件下,設(shè)bn=λan-n2,若數(shù)列{bn}中,有b1>b2,b3>b4,…,b2n-1>b2n,…成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2,點(diǎn)M在線(xiàn)段EC上且不與E,C重合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(2)當(dāng)EM=2MC時(shí),求平面BDM與平面ABF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P是△ABC所在平面內(nèi)的點(diǎn),且
PA
+2
PB
+3
PC
=3
AC

(1)求證:點(diǎn)P在直線(xiàn)AB上;
(2)求△PAC與△PBC的面積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式:
(1)x2-5x-6>0;
(2)1+2x-x2≥0;
(3)|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿(mǎn)足bn=an•2n-1,求{bn}的前n項(xiàng)和Tn
(理)(Ⅲ)若數(shù)列{cn}滿(mǎn)足cn=
1
Sn+1-1
,且{cn}前n項(xiàng)和為L(zhǎng)n,求證:Ln
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
cosπx,x≤0
f(x-1)+1,x>0
,則f(
4
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在圓C:x2+y2=10內(nèi)隨機(jī)撒一粒豆子,則豆子落在陰影部分的概率是( 。
A、1-
2
B、
2
5
C、
4
D、
2

查看答案和解析>>

同步練習(xí)冊(cè)答案