【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,離心率.過(guò)的直線與橢圓相交于兩點(diǎn),且的周長(zhǎng)為.

1)求橢圓的方程;

2)若點(diǎn)位于第一象限,且,求的外接圓的方程.

【答案】12

【解析】

1)由的周長(zhǎng)為,再結(jié)合即可解出a,b

2)設(shè),由,聯(lián)立橢圓方程可解得A點(diǎn)坐標(biāo),然后再寫出直線的方程,聯(lián)立橢圓方程得到B點(diǎn)坐標(biāo)即可解決.

解:(1)因?yàn)闄E圓的離心率

所以.

的周長(zhǎng)為,所以.

聯(lián)立①②,解得,從而,

因此橢圓的方程為.

2)因?yàn)辄c(diǎn)位于第一象限,故設(shè),其中.

因?yàn)?/span>,所以,又點(diǎn)在橢圓上,

所以解得,從而.

由(1)知,橢圓的左焦點(diǎn)為,所以直線的方程為

,解得

所以.

因?yàn)?/span>,所以的外接圓就是以為直徑的圓.

又橢圓的右焦點(diǎn)為

所以線段的中點(diǎn)的坐標(biāo)為,此時(shí),

的外接圓的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龍)、巳(蛇)、午(馬)、未(羊)、申(猴)、酉(雞)、戌(狗)、亥(豬),每一個(gè)人的出生年份對(duì)應(yīng)了十二種動(dòng)物中的一種,即自己的屬相.現(xiàn)有印著六種不同生肖圖案(包含馬、羊)的毛絨娃娃各一個(gè),小張同學(xué)的屬相為馬,小李同學(xué)的屬相為羊,現(xiàn)在這兩位同學(xué)從這六個(gè)毛絨娃娃中各隨機(jī)取一個(gè)(不放回),則這兩位同學(xué)都拿到自己屬相的毛絨娃娃的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐E-ABCD中,底面ABCD為正方形,平面CDE.已知,

1)證明:平面平面ABCD

(2)求直線BE與平面ACE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),點(diǎn)和點(diǎn),動(dòng)點(diǎn)滿足:.

1)求動(dòng)點(diǎn)的軌跡曲線的方程并說(shuō)明是何種曲線;

2)若拋物線的焦點(diǎn)恰為曲線的頂點(diǎn),過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn),,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在直角梯形中,,,點(diǎn)邊的中點(diǎn),將沿折起,使平面平面,連接,,,得到如圖②所示的幾何體.

1)求證:平面;

2)若,二面角的平面角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形.挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的右焦點(diǎn)為點(diǎn)的坐標(biāo)為,為坐標(biāo)原點(diǎn),是等腰直角三角形.

(1)求橢圓的方程;

(2)經(jīng)過(guò)點(diǎn)作直線交橢圓兩點(diǎn),求面積的最大值;

(3)是否存在直線交橢圓于兩點(diǎn),使點(diǎn)的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí).

①求函數(shù)處的切線方程;

②定義其中,求;

2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)滿足約束條件的最小值為7,則_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案