分析 (Ⅰ)求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出h(x)的導數(shù),通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性確定a的具體范圍即可;
(Ⅲ)得到lnx≥$\frac{2(x-1)}{x+1}$,令x=n(n≥2,n∈N*),得lnn>$\frac{2(n-1)}{n+1}$,x取不同的值,相乘即可.
解答 解:(Ⅰ)f(x)的定義域為(0,+∞),f′(x)=lnx+$\frac{1}{x}$+1,
設(shè)g(x)=f′(x),g′(x)=$\frac{x-1}{{x}^{2}}$,
令g′(x)>0,得x>1,g′(x)<0,得0<x<1,
∴g(x)在(0,1)遞減,在(1,+∞)遞增,g(x)min=g(1)=2,
∴f′(x)>0在(0,+∞)上恒成立,
∴f(x)的遞增區(qū)間為(0,+∞),無遞減區(qū)間.
(Ⅱ)設(shè)h(x)=(x-1)lnx-ax+a,
由(Ⅰ)知:h′(x)=lnx+$\frac{1}{x}$=1-a=g(x)-a,
g(x)在(1,+∞)遞增,∴g(x)≥g(1)=2,
(1)當a≤2時,h′(x)≥0,h(x)在[1,+∞)遞增,
∴h(x)≥h(1)=0,滿足題意.
(2)當a>2時,設(shè)ω(x)=h′(x),ω′(x)=$\frac{x-1}{{x}^{2}}$,
當x≥1時,ω′(x)≥0,∴ω(x)在[1,+∞)遞增,
ω(1)=2-a<0,ω(ea)=1+e-a>0,
∴?x0∈(1,ea),使ω(x0)=0,∵ω(x)在[1,+∞)遞增,
∴x∈(1,x0),ω(x)<0,即h′(x)<0,
∴當x∈(1,x0時,h(x)<h(1)=0,不滿足題意.
綜上,a的取值范圍為(-∞,2].
(Ⅲ)由(Ⅱ)知,令a=2,(x+1)lnx≥2(x-1),
∴x≥1,lnx≥$\frac{2(x-1)}{x+1}$(當且僅當x=1取“=”),
令x=n(n≥2,n∈N*)得lnn>$\frac{2(n-1)}{n+1}$,
即ln2>$\frac{2-1}{3}$,ln3>$\frac{2-2}{4}$,ln4>$\frac{2-3}{5}$,…,
ln(n-2)>$\frac{2(n-3)}{n-1}$,ln(n-1)>$\frac{2(n-2)}{n}$,lnn>$\frac{2(n-1)}{n+1}$,
將上述n-1個式子相乘得:ln2•ln3…lnn>$\frac{{2}^{n+1}•2}{n(n+1)}$=$\frac{{2}^{n}}{n(n+1)}$,
∴原命題得證.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及不等式的證明,考查分類討論思想,是一道綜合題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8+6$\sqrt{2}$ | B. | 10+8$\sqrt{2}$ | C. | 12+4$\sqrt{2}$ | D. | 14+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等級 | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 30 | x | 8 |
女生(人) | 30 | 6 | y |
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-5,3) | B. | [-5,-4) | C. | [-5,4) | D. | (-4,-3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com