A. | 0 | B. | 1 | C. | -1 | D. | 1或-1 |
分析 由已知利用誘導(dǎo)公式可求sin(α+$\frac{π}{6}$)=-1,進(jìn)而利用誘導(dǎo)公式可求cos(α-$\frac{π}{3}$)的值,利用二倍角的余弦函數(shù)公式即可計(jì)算求值得解.
解答 解:∵sin(α+$\frac{7π}{6}$)=sin[π-(α+$\frac{7π}{6}$)]=-sin(α+$\frac{π}{6}$)=1,
∴sin(α+$\frac{π}{6}$)=-1,
∴sin(α+$\frac{π}{6}$)=cos[$\frac{π}{2}$-(α+$\frac{π}{6}$)]=cos(α-$\frac{π}{3}$)=-1,
∴cos(2α-$\frac{2π}{3}$)=2cos2(α-$\frac{π}{3}$)-1=2×(-1)2-1=1.
故選:B.
點(diǎn)評 本題主要考查了誘導(dǎo)公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2,3,4 | B. | 2,4,5 | C. | 5,5,6 | D. | 4,13,15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (7,-2) | B. | (1,-2) | C. | (1,-3) | D. | (7,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $1-\frac{π}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com