【題目】已知圓M的圓心M在x軸上,半徑為1,直線 ,被圓M所截的弦長(zhǎng)為 ,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設(shè)A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

【答案】解:(Ⅰ)設(shè)圓心M(a,0),由已知,得M到l:8x﹣6y﹣3=0的距離為 ,∴ ,
又∵M(jìn)在l的下方,∴8a﹣3>0,∴8a﹣3=5,a=1,故圓的方程為(x﹣1)2+y2=1.
(Ⅱ)設(shè)AC斜率為k1 , BC斜率為k2 , 則直線AC的方程為y=k1x+t,直線BC的方程為y=k2x+t+6.由方程組 ,得C點(diǎn)的橫坐標(biāo)為 ,∵|AB|=t+6﹣t=6,∴ ,
由于圓M與AC相切,所以 ,∴ ;同理, ,∴ ,∴ ,(10分)∵﹣5≤t≤﹣2,∴﹣2≤t+3≤1,∴﹣8≤t2+6t+1≤﹣4,∴ ,
【解析】(1)設(shè)圓心M(a,0),利用M到8x-6y-3=0的距離,求出M坐標(biāo),然后求圓M的方程;(2)設(shè)A(0,t),B(0,t+6)(-5≤t≤-2),設(shè)AC斜率為k1 , BC斜率為k2 , 推出直線AC、直線BC的方程,求出△ABC的面積S的表達(dá)式,求出面積的最大值和最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都是40%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有一次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)作為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):907,966,191,925,271,932,812,458,569,683,431,257,393,027,556,488,730,113,537,989.據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有一次命中的概率為( 。
A.0.25
B.0.2
C.0.35
D.0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆質(zhì)地均勻的骰子先后拋擲2次,觀察其向上的點(diǎn)數(shù),分別記為x,y.
(1)若記“x+y=8”為事件A,求事件A發(fā)生的概率;
(2)若記“x2+y2≤12”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,A1C1⊥B1D1 , E,F(xiàn)分別是AB,BC的中點(diǎn).

(1)求證:EF∥平面A1BC1;
(2)求證:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)試討論函數(shù)的單調(diào)性;

(2)設(shè),記,當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)根, ,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(0,1)、B(0,2)、C(4t,2t2﹣1)(t∈R),⊙M是以AC為直徑的圓,再以M為圓心、BM為半徑作圓交x軸交于D、E兩點(diǎn).
(Ⅰ)若△CDE的面積為14,求此時(shí)⊙M的方程;
(Ⅱ)試問(wèn):是否存在一條平行于x軸的定直線與⊙M相切?若存在,求出此直線的方程;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求 的最大值,并求此時(shí)∠DBE的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+an+1=( n , Sn=a1+3a2+32a3+…+3n1an , 利用類似等比數(shù)列的求和方法,可求得4Sn﹣3nan=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,該幾何體是由一個(gè)直三棱柱ADE﹣BCF和一個(gè)正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h(yuǎn),使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

同步練習(xí)冊(cè)答案