【題目】如圖,四棱錐中,底面為菱形,為等邊三角形.

(1)求證:

(2)若,,求二面角的余弦值.

【答案】(1)見解析(2)0

【解析】

(1)取AD中點(diǎn)E,連接,由已知可得,即可證平面從而可得;

(2)建立相應(yīng)的空間直角坐標(biāo)系,應(yīng)用面的法向量垂直得到其余弦值為0.

(1)因?yàn)榈酌?/span>ABCD為菱形,且,所以為等邊三角形如下圖,作,則EAD的中點(diǎn)

又因?yàn)?/span>為等邊三角形,所以

因?yàn)?/span>PEBE為平面PBE內(nèi)的兩條相交的直線,所以直線平面PBE,

又因?yàn)?/span>PB為面PBE內(nèi)的直線,所以

(2)為等邊三角形,邊長為2,

,所以,,

因?yàn)?/span>,

所以,

如圖建立空間直角坐標(biāo)系,

,

設(shè)平面的法向量為,

,,即

,,,

設(shè)平面的法向量為

,,即,

,

因?yàn)?/span>,

設(shè)二面角的平面角為,則有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓,左、右焦點(diǎn)分別是、,為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交于橢圓上的點(diǎn)

1)求橢圓的方程;

2)設(shè)橢圓,為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn),射線交橢圓于點(diǎn)

①求的值;

②令,的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“一帶一路”沿線的20國青年評選出了中國“新四大發(fā)明”:高鐵、支付寶、共享單車和網(wǎng)購.2019年春節(jié)期間,“支付寶大行動(dòng)”用發(fā)紅包的方法刺激支付寶的使用.某商家統(tǒng)計(jì)前5名顧客掃描紅包所得金額分別為5.2元,2.9元,3.3元,5.9元,4.8元,商家從這5名顧客中隨機(jī)抽取3人贈(zèng)送飲水杯.

(1)求獲得飲水杯的三人中至少有一人的紅包超過5元的概率;

(2)統(tǒng)計(jì)一周內(nèi)每天使用支付寶付款的人數(shù)x與商家每天的凈利潤y元,得到7組數(shù)據(jù),如表所示,并作出了散點(diǎn)圖.

(i)直接根據(jù)散點(diǎn)圖判斷,出哪一個(gè)適合作為每天的凈利潤的回歸方程類型.

(ii)根據(jù)(i)的判斷,建立y關(guān)于x的回歸方程;若商家當(dāng)天的凈利潤至少是1400元,估計(jì)使用支付寶付款的人數(shù)至少是多少?(a,b,c,d的值取整數(shù))

參考數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,點(diǎn)與拋物線的焦點(diǎn)關(guān)于原點(diǎn)對稱,過點(diǎn)且斜率為的直線與拋物線交于不同兩點(diǎn),線段的中點(diǎn)為,直線與拋物線交于兩點(diǎn)

Ⅰ)判斷是否存在實(shí)數(shù)使得四邊形為平行四邊形.若存在,求出的值;若不存在,說明理由;

Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,,

1)若是線段的中點(diǎn),求證:平面平面;

2)若、、分別是線段、的中點(diǎn),求證:直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)、的坐標(biāo)分別為,動(dòng)點(diǎn)P滿足,設(shè)動(dòng)點(diǎn)P的軌跡為,以動(dòng)點(diǎn)P到點(diǎn)距離的最大值為長軸,以點(diǎn)、為左、右焦點(diǎn)的橢圓為,則曲線和曲線的交點(diǎn)到軸的距離為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國詩詞大會(huì)的播出引發(fā)了全民讀書熱,某學(xué)校語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如右圖,若規(guī)定得分不低于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),低于85分且不低于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛好者”的稱號(hào).根據(jù)該次比賽的成績按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為( 。

A. 6B. 5C. 4D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于,兩點(diǎn),直線,分別與軸交于點(diǎn),,求證:在軸上存在點(diǎn),使得無論非零實(shí)數(shù)怎樣變化,總有為直角,并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案