【題目】已知過點(diǎn)A(﹣2,0)的直線與x=2相交于點(diǎn)C,過點(diǎn)B(2,0)的直線與x=﹣2相交于點(diǎn)D,若直線CD與圓x2+y2=4相切,則直線AC與BD的交點(diǎn)M的軌跡方程為

【答案】 +y2=1(x≠±2)
【解析】解:設(shè)C(2,y1),D(﹣2,y2),則直線CD的方程為y﹣y1= (x﹣2),

即(y1﹣y2)x﹣4y+2(y1+y2)=0,

∵直線CD與圓x2+y2=4相切,

=2,整理得y1y2=4.

設(shè)M(x0,y0),則直線AM的方程為y= (x+2),

令x=2得y= ,即y1= ,

同理得y2= ,

∵y1y2=4.

=4,

即x02+4y02=4,即 +y02=1.

∴M的軌跡方程為: =1(x≠±2).

所以答案是: =1(x≠±2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為y=x+2,點(diǎn)P是拋物線y2=4x上到直線l距離最小的點(diǎn),點(diǎn)A是拋物線上異于點(diǎn)P的點(diǎn),直線AP與直線l交于點(diǎn)Q,過點(diǎn)Q與x軸平行的直線與拋物線y2=4x交于點(diǎn)B.

(Ⅰ)求點(diǎn)P的坐標(biāo);
(Ⅱ)證明直線AB恒過定點(diǎn),并求這個定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (0≤α<π,t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線C的形狀;
(Ⅱ)若直線l經(jīng)過點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中點(diǎn).
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求直線DH與平面BDEF所成角的正弦值;
(Ⅲ)求二面角H﹣BD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某產(chǎn)品的廣告費(fèi)用x(單位:萬元)與銷售額y(單位:萬元)具有線性關(guān)系關(guān)系,其統(tǒng)計數(shù)據(jù)如下表:

x

3

4

5

6

y

25

30

40

45

由上表可得線性回歸方程 = x+ ,據(jù)此模型預(yù)報廣告費(fèi)用為8萬元時的銷售額是(
附: = = x.
A.59.5
B.52.5
C.56
D.63.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+1,g(x)=2aln(x﹣1)(a∈R).
(1)求函數(shù)h(x)=f(x)﹣g(x)的極值;
(2)當(dāng)a>0時,若存在實(shí)數(shù)k,m使得不等式g(x)≤kx+m≤f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程為(x﹣3)2+(y﹣4)2=16,過直線l:6x+8y﹣5a=0(a>0)上的任意一點(diǎn)作圓的切線,若切線長的最小值為 ,則直線l在y軸上的截距為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】=在△ABC中,角A,B,C的對邊分別為a,b,c,已知2(tanA+tanB)= +
(Ⅰ)證明:a+b=2c;
(Ⅱ)求cosC的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

同步練習(xí)冊答案