【題目】已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的負(fù)半軸的拋物線截直線y=x所得的弦長|P1P2|=4,求此拋物線的方程.

【答案】y2=-2x.

【解析】試題分析:拋物線,聯(lián)立,得,由 ,根據(jù)韋達(dá)定理及弦長公式,列出關(guān)于的方程,解得的值,就能求出拋物線方程.

試題解析:設(shè)拋物線方程為y2=-2px(p>0),把直線方程與拋物線方程聯(lián)立得

消元得x2+(3+2p)x=0,① 判別式Δ=(3+2p)2-9=4p2+12p>0,解得p>0或p<-3(舍),

設(shè)P1(x1,y1),P2(x2,y2),則①中由根與系數(shù)的關(guān)系得x1x2=-(3+2p),x1·x2,代入弦長公式得·=4,解得p=1或p=-4(舍),所以所求拋物線方程為y2=-2x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為( 。
A.9
B.18
C.20
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的方程: ,P為橢圓上的一點(diǎn)(點(diǎn)P在第三象限上),圓P 以點(diǎn)P為圓心,且過橢圓的左頂點(diǎn)M與點(diǎn)C(﹣2,0),直線MP交圓P與另一點(diǎn)N.

(1)求圓P的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)A在橢圓E上,求使得 取得最小值的點(diǎn)A的坐標(biāo);
(3)若過橢圓的右頂點(diǎn)的直線l上存在點(diǎn)Q,使∠MQN為鈍角,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和Sn=2n+1,
(1)求{an}的通項(xiàng)公式
(2)設(shè)bn=log2an+2 , 求 的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若方程上有根,求實(shí)數(shù)的取值范圍;

(2)設(shè)若對任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米及其以上空氣質(zhì)量為超標(biāo).

某試點(diǎn)城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個(gè)位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機(jī)抽出2,

(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;

(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱ABCD﹣A1B1C1D1的側(cè)棱AA1⊥底面ABCD,ABCD是等腰梯形,AB∥DC,AB=2,AD=1,∠ABC=60°,E為A1C的中點(diǎn)

(1)求證:D1E∥平面BB1C1C;
(2)求證:BC⊥A1C;
(3)若A1A=AB,求二面角A1﹣AC﹣B1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案