15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+(4a-3)x+3a,x<0}\\{{{log}_a}(x+1)+1,x≥0}\end{array}}\right.(a>0且a≠1)$在R上單調(diào)遞減,且關(guān)于x的方程$|f(x)|=2-\frac{x}{3}$恰有兩個不相等的實數(shù)解,則a的取值范圍是( 。
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{2}{3}$)

分析 由減函數(shù)可知f(x)在兩段上均為減函數(shù),且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2-$\frac{x}{3}$的圖象,根據(jù)交點個數(shù)判斷3a與2的大小關(guān)系,列出不等式組解出.

解答 解::∵f(x)是R上的單調(diào)遞減函數(shù),
∴y=x2+(4a-3)x+3a在(-∞,0)上單調(diào)遞減,y=loga(x+1)+1在(0,+∞)上單調(diào)遞減,
且f(x)在(-∞,0)上的最小值大于或等于f(0).
∴$\left\{\begin{array}{l}{\frac{3-4a}{2}≥0}\\{0<a<1}\\{3a≥1}\end{array}\right.$,解得$\frac{1}{3}≤a≤\frac{3}{4}$.
作出y=|f(x)|和y=2-$\frac{x}{3}$的函數(shù)草圖如圖所示:
∵|f(x)|=2-$\frac{x}{3}$恰有兩個不相等的實數(shù)解,
∴3a<2,即a<$\frac{2}{3}$.
綜上,$\frac{1}{3}$≤a<$\frac{2}{3}$.
故選:D.

點評 本題考查了分段函數(shù)的單調(diào)性,函數(shù)零點的個數(shù)判斷,結(jié)合函數(shù)函數(shù)圖象判斷端點值的大小是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.微信是騰訊公司推出的一種手機(jī)通訊軟件,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶為“A組”,否則為“B組”,調(diào)查結(jié)果如下:
A組B組合計
男性262450
女性302050
合計5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“A組”用戶與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜1份,求所抽取5人中“A組”和“B組”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取2人贈送200元的護(hù)膚品套裝,求這2人中至少有1人在“A組”的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.
參考數(shù)據(jù):
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.過點P(a,-2)作拋物線C:x2=4y的兩條切線,切點分別為A(x1,y1),B(x2,y2).
(Ⅰ) 證明:x1x2+y1y2為定值;
(Ⅱ) 記△PAB的外接圓的圓心為點M,點F是拋物線C的焦點,對任意實數(shù)a,試判斷以PM為直徑的圓是否恒過點F?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的通項公式為${a_n}={(-1)^{n+1}}•{n^2}$,其前n項和為Sn,
(1)求S1,S2,S3,S4,并猜想Sn的值;
(2)用數(shù)學(xué)歸納法證明(1)中所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)+f′(x)>1,f(0)=2017,則不等式exf(x)>ex+2016(其中e為自然對數(shù)的底數(shù))的解集為(  )
A.(-∞,0)∪(0,+∞)B.(0,+∞)C.(2016,+∞)D.(-∞,0)∪(2016,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列命題:
(1)若函數(shù)h(x)=cos4x-sin4x,則h′($\frac{π}{2}$)=1;
(2)若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2015)(x-2016),則g′(2016)=2015!;
(3)若函數(shù)f(x)=$\frac{sinx}{2+cosx}$的單調(diào)遞增區(qū)間是(2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$)(k∈Z)
(4)若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點”的充分條件;
其中正確的命題序號為(2)、(3)、(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知一個幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2B.4C.6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知菱形ABCD的邊長為6,∠BAD=60°,對角線AC、BD相交于O,將菱形ABCD沿對角線AC折起,使BD=3$\sqrt{2}$,得到三棱錐B-ACD.

(1)若M是BC的中點,求證:直線OM∥平面ABD;
(2)求三棱錐B-ACD的體積;
(3)若N是BD上的動點,求當(dāng)直線CN與平面OBD所成角最大時,二面角N-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B=BC,B1C1∥BC,B1C1=$\frac{1}{2}$BC
(I)求證:AB1∥平面A1C1C;
(II)求直線BC1與平面A1C1C成角的正弦值的大。

查看答案和解析>>

同步練習(xí)冊答案