分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),根據(jù)切點(diǎn)坐標(biāo),向量k=f′(1)=m-2,求出切線方程即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論m的符號(hào)結(jié)合二次函數(shù)的性質(zhì),判斷函數(shù)的單調(diào)性,從而求出m的具體范圍;
(Ⅲ)根據(jù)直線和曲線C的關(guān)系,得到$g(x)=\frac{m}{2}{x^2}-(m-1)x-lnx+\frac{m-2}{2},x>0$,根據(jù)函數(shù)的單調(diào)性求出m的范圍即可.
解答 解:(Ⅰ)$f'(x)=mx-1-\frac{1}{x}$,x>0…(1分)
因?yàn)?f(1)=\frac{m}{2}-1$,所以切點(diǎn)為(1,$\frac{m}{2}-1$).
又k=f′(1)=m-2,…(2分)
所以切線l$:y-(\frac{m}{2}-1)=(m-2)(x-1)$,
即l$:y=(m-2)x-\frac{m-2}{2}$.…(3分)
(Ⅱ)①當(dāng)m≤0時(shí),f′(x)<0,
所以f(x)在(0,+∞)上單調(diào)遞減,符合題意. …(5分)
②當(dāng)m>0時(shí),設(shè)y=mx2-x-1,該拋物線開口向上,
且△=1+4m>0,過(guò)(0,-1)點(diǎn),
所以該拋物線與x軸相交,交點(diǎn)位于原點(diǎn)兩側(cè),
f(x)不單調(diào),不符合題意,舍去. …(6分)
綜上m≤0. …(7分)
(Ⅲ)因?yàn)橹本l與C有且只有一個(gè)公共點(diǎn),
所以方程$\frac{m}{2}{x^2}-x-lnx-(m-2)x+\frac{m-2}{2}=0$,
即$\frac{m}{2}{x^2}-(m-1)x-lnx+\frac{m-2}{2}=0$有且只有一個(gè)根. …(8分)
設(shè)$g(x)=\frac{m}{2}{x^2}-(m-1)x-lnx+\frac{m-2}{2},x>0$,
則$g'(x)=mx-(m-1)-\frac{1}{x}=\frac{{m{x^2}-(m-1)x-1}}{x}=\frac{(mx+1)(x-1)}{x}$,…(10分)
①當(dāng)m≥0時(shí),
因?yàn)閤>0,所以mx+1>0,令g'(x)>0,解得x>1;
令g′(x)<0,解得0<x<1;
所以g(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減,
所以g(x)min=g(1)=0,所以符合條件.…(11分)
②當(dāng)-1<m<0時(shí),則$-\frac{1}{m}>1$
令g′(x)>0,解得$1<x<-\frac{1}{m}$;
令g′(x)<0,解得0<x<1或$x>-\frac{1}{m}$;
所以g(x)在$(1,-\frac{1}{m})$上單調(diào)遞增,在(0,1),$(-\frac{1}{m},+∞)$上單調(diào)遞減,…(12分)
$g(\frac{2m-3}{m})=\frac{m}{2}{(\frac{2m-3}{m})^2}-(m-1)(\frac{2m-3}{m})-ln(\frac{2m-3}{m})+\frac{m-2}{2}$
=$\frac{{{{(2m-3)}^2}-2(m-1)(2m-3)}}{2m}-ln(\frac{2m-3}{m})+\frac{m-2}{2}$
=$-\frac{2m-3}{2m}-ln(\frac{2m-3}{m})+\frac{m-2}{2}$,
因?yàn)?1<m<0,所以$-\frac{2m-3}{2m}<0$,$\frac{m-2}{2}<0$,
又$\frac{2m-3}{m}>1$,所以$ln(\frac{2m-3}{m})>0$,
即$-ln(\frac{2m-3}{m})<0$,所以$g(\frac{2m-3}{m})<0$.
所以g(x)在$(1,-\frac{1}{m})$上有一個(gè)零點(diǎn),且g(1)=0,
所以g(x)有兩個(gè)零點(diǎn),不符合題意.
綜上m≥0.…(14分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,曲線的切線方程問(wèn)題,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,+∞) | B. | (-∞,-1)∪(0,+∞) | C. | (-∞,0)∪(0,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{32}{3}$ | B. | $\frac{64}{3}$ | C. | 32 | D. | 16 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com