已知定義域為R的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時,f′(x)+
f(x)
x
>0,若a=
1
2
f(
1
2
),b=-2f(-2),c=(ln
1
2
)f(ln
1
2
),則a,b,c的大小關(guān)系正確的是( 。
A、a<b<c
B、b<c<a
C、a<c<b
D、c<a<b
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:利用條件構(gòu)造函數(shù)h(x)=xf(x),然后利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性,利用函數(shù)的單調(diào)性比較大。
解答: 解:設(shè)h(x)=xf(x),
∴h′(x)=f(x)+x•f′(x),
∵y=f(x)是定義在實數(shù)集R上的奇函數(shù),
∴h(x)是定義在實數(shù)集R上的偶函數(shù),
當(dāng)x>0時,h'(x)=f(x)+x•f′(x)>0,
∴此時函數(shù)h(x)單調(diào)遞增.
∵a=
1
2
f(
1
2
)=h(
1
2
),b=-2f(-2)=2f(2)=h(2),
c=(ln
1
2
)f(ln
1
2
)=h(ln
1
2
)=h(-ln2)=h(ln2),
又2>ln2>
1
2
,
∴b>c>a.
故選:C.
點評:本題考查如何構(gòu)造新的函數(shù),利用單調(diào)性比較大小,是常見的題目.本題屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-xlnx,a∈R.
(1)若f(x)≤1恒成立,求a的取值范圍;
(2)設(shè)n∈N*,求證:ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)高一年級從甲、乙兩個班級各選出7名學(xué)生參加學(xué)科測試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是83.
(Ⅰ)求x和y的值,并計算甲班7位學(xué)生成績的方差S2
(Ⅱ)從成績在90分以上的學(xué)生中隨機抽取兩名學(xué)生,求至少有一名學(xué)生是甲班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AD、BE是△ABC的兩條高,求證:∠CED=∠ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,
AB
=
a
,
AC
=
b
,當(dāng)
a
b
<0或
a
b
=0時,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的直徑SC=4,A,B是球面上的兩點,AB=
3
,∠ASC=∠BSC=30°,則棱錐S-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=32n-3.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)有一個零點x0=-
2
3
,且其圖象過點A(
7
3
,1),記函數(shù)f(x)的最小正周期為T.
(Ⅰ)若f′(x0)<0,試求T的最大值及T取最大值時相應(yīng)的函數(shù)解析式;
(Ⅱ)若將所有滿足題設(shè)條件的ω值按從小到大的順序排列,構(gòu)成數(shù)列{ωn},試求數(shù)列{ωn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正四棱柱A1B1C1D1-ABCD的底面邊長1,AB1與底面ABCD成60°角,則點A1到直線AC的距離為( 。
A、
3
3
B、1
C、
2
D、
3

查看答案和解析>>

同步練習(xí)冊答案