已知直線a,b,c,若a⊥c,b⊥c,則a與b的位置關(guān)系是
 
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:直線a,b是空間的兩條直線,如果在同一個平面內(nèi),兩條直線平行,如果不在同一個平面內(nèi),如墻角線,兩條直線相交,或者異面.
解答: 解:因?yàn)橹本a,b不一定在同一個平面內(nèi),所以如果在同一個平面內(nèi),兩條直線平行,如果不在同一個平面內(nèi),如墻角線,兩條直線相交,或者異面.如果在同一個平面內(nèi),兩條直線平行,如果不在同一個平面內(nèi),如墻角線,兩條直線相交,或者異面.
故答案為:平行、相交或異面.
點(diǎn)評:本題考查了空間兩條直線的位置關(guān)系,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=log2x,則f(-2)的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項滿足:a1=1-3k(k∈R),an=4n-1-3an-1
(1)判斷數(shù)列{an-
4n
7
}是否為等比數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)數(shù)列{an}為遞增數(shù)列,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,E為PD的中點(diǎn),證明:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x2+lnx-ax,若對?x1,x2∈(0,1),且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0 為真命題,則實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),離心率為e,直線l:y=ex+a與x軸、y軸分別交于點(diǎn)A,B,M是直線l與橢圓C的一個公共點(diǎn).若
AM
AB
,則λ+e2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊長BC=a,AC=b,AB=c,O為△ABC所在平面內(nèi)一點(diǎn),若a
OA
+b
OB
+c
OC
=
0
,則點(diǎn)O是△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x3-9x2+12x+8c
(1)當(dāng)c=1時,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若對于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式:-x2+4x+5<0的解集是
 

查看答案和解析>>

同步練習(xí)冊答案