設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,則f(-2)的值等于
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(-2)=-f(2)=-log22=-1.
解答: 解:∵f(x)是定義在R上的奇函數(shù),
且當(dāng)x>0時(shí),f(x)=log2x,
∴f(-2)=-f(2)=-log22=-1.
故答案為:-1.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=30.4,b=0.43,c=log0.43,則a,b,c的大小關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2+y2+x+2my+m2+m-1=0表示圓,則m的取值范圍是( 。
A、-2<m<0
B、-2<m<
5
4
C、m>
5
4
D、m<
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1<x<2},B={x|x<a}.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=log2x,且y∈(0,1)},B={y∈R||y|≤2},則∁BA=(  )
A、[-2,0]∪[1,2]
B、[-2,2]
C、[-2,1]∪{2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=-|x|+1,則當(dāng)x∈(0,6]時(shí),函數(shù)g(x)=f(x)-log3x的零點(diǎn)個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的斜邊為10,內(nèi)切圓的半徑為2,則兩條直角邊的長(zhǎng)為( 。
A、5和5
3
B、4
3
和5
3
C、6和8
D、5和7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在直角梯形ABCD中,AD∥BC,AB=2,BC=4,∠ABC=60°,沿對(duì)角線AC將梯形折成幾何體PACD,并使得∠PAD=90°(如圖2所示).
(Ⅰ)求證:PA⊥平面ACD;
(Ⅱ)若O為幾何體PACD外接球的球心,點(diǎn)G為△PCD的重心,求幾何體OACDG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a,b,c,若a⊥c,b⊥c,則a與b的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案