分析 根據(jù)垂徑定理得到過(guò)M的弦最短時(shí),所對(duì)的劣弧最短,而當(dāng)直線l與直線AM垂直時(shí)得到的弦最短,根據(jù)兩直線垂直時(shí)斜率乘積為-1得到直線l的斜率,寫(xiě)出直線l的方程即可.
解答 解:當(dāng)劣弧最短時(shí),MA與直線l垂直.所以kl•kAM=-1,圓心坐標(biāo)為(2,0)得到直線AM的斜率kAM=2,
所以kl=-$\frac{1}{2}$
所以過(guò)M(1,-2)的直線l的方程為:y+2=-$\frac{1}{2}$(x-1)化簡(jiǎn)得x+2y+3=0.
故答案為:x+2y+3=0.
點(diǎn)評(píng) 考查學(xué)生靈活運(yùn)用垂徑定理解決數(shù)學(xué)問(wèn)題的能力,掌握兩直線垂直時(shí)所取的條件是斜率乘積等于-1,會(huì)根據(jù)條件寫(xiě)出直線的一般式方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若命題p、q中至少有一個(gè)為真命題,則“p∧q”是真命題 | |
B. | 不等式ac2>bc2成立的充要條件是a>b | |
C. | “正四棱錐的底面是正方形”的逆命題是真命題 | |
D. | 若k>0,則方程x2+2x-k=0有實(shí)根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $π+\sqrt{3}π$ | B. | $\frac{4}{3}π$ | C. | $2π+\frac{{2\sqrt{3}}}{3}π$ | D. | $π+\frac{{\sqrt{3}}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=lgx4,g(x)=4lgx | B. | $f(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$,$g(x)=\sqrt{x^2}$ | ||
C. | $f(x)=\frac{{{x^2}-4}}{x-2}$,g(x)=x+2 | D. | $f(x)=\sqrt{x+1}•\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com