A. | f(x)=lgx4,g(x)=4lgx | B. | $f(x)=\left\{\begin{array}{l}x,x≥0\\-x,x<0\end{array}\right.$,$g(x)=\sqrt{x^2}$ | ||
C. | $f(x)=\frac{{{x^2}-4}}{x-2}$,g(x)=x+2 | D. | $f(x)=\sqrt{x+1}•\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可
解答 解:對于A:f(x)=lgx4的定義域是{x|x≠0},而g(x)=4lgx的定義域是{x|x>0},定義域不相同,∴不是同一函數(shù);
對于B:$f(x)=\left\{\begin{array}{l}{x,(x≥0)}\\{-x,(x<0)}\end{array}\right.$=|x|,$g(x)=\sqrt{{x}^{2}}=|x|$,定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
對于C:$f(x)=\frac{{x}^{2}-4}{x-2}$的定義域是{x|x≠2},而g(x)=x+2的定義域是R,定義域不相同,∴不是同一函數(shù);
對于D:$f(x)=\sqrt{x+1}•\sqrt{x-1}$的定義域是{x|-1≤x≤1},而g(x)=$\sqrt{{x}^{2}-1}$的定義域是{x|1≤x或x≤-1},定義域不相同,∴不是同一函數(shù);
故選:B.
點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 2 | C. | 0或1 | D. | -1或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com